2022-2023学年山东省济宁市嘉祥县九年级数学上册期末监测试题含解析_第1页
2022-2023学年山东省济宁市嘉祥县九年级数学上册期末监测试题含解析_第2页
2022-2023学年山东省济宁市嘉祥县九年级数学上册期末监测试题含解析_第3页
2022-2023学年山东省济宁市嘉祥县九年级数学上册期末监测试题含解析_第4页
2022-2023学年山东省济宁市嘉祥县九年级数学上册期末监测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.关于x的一元二次方程x2+2x﹣a=0的一个根是1,则实数a的值为()A.0 B.1 C.2 D.32.在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n)和芍药的数量规律,那么当n=11时,芍药的数量为()A.84株B.88株C.92株D.121株3.下列各式运算正确的是()A. B. C. D.4.下列美丽的图案中,既是轴对称图形又是中心对称图形的是()A. B.C. D.5.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.60° B.50° C.40° D.30°6.如图,在▱APBC中,∠C=40°,若⊙O与PA、PB相切于点A、B,则∠CAB=()A.40° B.50° C.60° D.70°7.用配方法解方程x2+4x+1=0时,方程可变形为()A. B. C. D.8.如图,AB为⊙O的直径,四边形ABCD为⊙O的内接四边形,点P在BA的延长线上,PD与⊙O相切,D为切点,若∠BCD=125°,则∠ADP的大小为()A.25° B.40° C.35° D.30°9.已知如图:为估计池塘的宽度,在池塘的一侧取一点,再分别取、的中点、,测得的长度为米,则池塘的宽的长为()A.米 B.米 C.米 D.米10.把二次函数y=﹣(x+1)2﹣3的图象沿着x轴翻折后,得到的二次函数有()A.最大值y=3 B.最大值y=﹣3 C.最小值y=3 D.最小值y=﹣3二、填空题(每小题3分,共24分)11.关于x的一元二次方程x2+mx+3=0的一个根是2,则m的值为________.12.在阳光下,高6m的旗杆在水平地面上的影子长为4m,此时测得附近一个建筑物的影子长为16m,则该建筑物的高度是_____m.13.已知关于的二次函数的图象如图所示,则关于的方程的根为__________14.如图,在平面直角坐标系中,点A是函数图象上的点,AB⊥x轴,垂足为B,若△ABO的面积为3,则的值为__.15.如图,河的两岸、互相平行,点、、是河岸上的三点,点是河岸上一个建筑物,在处测得,在处测得,若米,则河两岸之间的距离约为______米(,结果精确到0.1米)(必要可用参考数据:)16.函数的自变量的取值范围是.17.在单词(数学)中任意选择-一个字母,选中字母“”的概率为______.18.如图,平面直角坐标系中,等腰的顶点分别在轴、轴的正半轴,轴,点在函数的图象上.若则的值为_____.三、解答题(共66分)19.(10分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为B(3,4)、A(﹣3,2)、C(1,0),正方形网格中,每个小正方形的边长是一个单位长度.(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格上画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为1:2,点C2的坐标是;(画出图形)(3)若M(a,b)为线段AC上任一点,写出点M的对应点M2的坐标.20.(6分)我们把两条中线互相垂直的三角形称为“中垂三角形”.如图1,图2,图3中,是的中线,,垂足为点,像这样的三角形均为“中垂三角形.设.(1)如图1,当时,则_________,__________;(2)如图2,当时,则_________,__________;归纳证明(3)请观察(1)(2)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式;拓展应用(4)如图4,在中,分别是的中点,且.若,,求的长.21.(6分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.22.(8分)如图已知直线与抛物线y=ax2+bx+c相交于A(﹣1,0),B(4,m)两点,抛物线y=ax2+bx+c交y轴于点C(0,﹣),交x轴正半轴于D点,抛物线的顶点为M.(1)求抛物线的解析式;(2)设点P为直线AB下方的抛物线上一动点,当△PAB的面积最大时,求△PAB的面积及点P的坐标;(3)若点Q为x轴上一动点,点N在抛物线上且位于其对称轴右侧,当△QMN与△MAD相似时,求N点的坐标.23.(8分)如图,已知反比例函数的图像与一次函数的图象相交于点A(1,4)和点B(m,-2).(1)求反比例函数和一次函数的解析式;(2)求ΔAOC的面积;(3)直接写出时的x的取值范围(只写答案)24.(8分)解方程:(1)2x2﹣7x+3=0(2)7x(5x+2)=6(5x+2)25.(10分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被哦感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(3)轮(为正整数)感染后,被感染的电脑有________台.26.(10分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.

参考答案一、选择题(每小题3分,共30分)1、D【分析】方程的解就是能使方程左右两边相等的未知数的值,把x=1代入方程,即可得到一个关于a的方程,即可解得实数a的值;【详解】解:由题可知,一元二次方程x2+2x﹣a=0的一个根是1,将x=1代入方程得,,解得a=3;故选D.【点睛】本题主要考查了一元二次方程的解,掌握一元二次方程的解是解题的关键.2、B【解析】解:由图可得,芍药的数量为:4+(2n﹣1)×4,∴当n=11时,芍药的数量为:4+(2×11﹣1)×4=4+(22﹣1)×4=4+21×4=4+84=88,故选B.点睛:本题考查规律型:图形的变化类,解答本题的关键是明确题意,发现题目中图形的变化规律.3、D【分析】逐一对选项进行分析即可.【详解】A.不是同类项,不能合并,故该选项错误;B.,故该选项错误;C.,故该选项错误;D.,故该选项正确;故选:D.【点睛】本题主要考查同底数幂的乘除法,积的乘方,掌握同底数幂的乘除法和积的乘方的运算法则是解题的关键.4、A【分析】根据轴对称图形和中心对称图形的定义结合图形的特点选出即可.【详解】解:A、图形既是轴对称图形又是中心对称图形,故本选项符合题意;B、图形是轴对称图形,不是中心对称图形,故本选项不合题意;C、图形是中心对称图形,不是轴对称图形,故本选项不合题意;D、图形是轴对称图形,不是中心对称图形,故本选项不合题意.故选:A.【点睛】本题主要考查轴对称图形及中心对称图形,熟练掌握轴对称图形及中心对称图形的概念是解题的关键.5、B【分析】直接利用圆周角定理可求得∠ACB的度数.【详解】∵⊙O是△ABC的外接圆,∠AOB=100°,

∴∠ACB=∠AOB=100°=50.

故选:B.【点睛】本题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角是所对的圆心角的一半.6、D【分析】根据切线长定理得出四边形APBC是菱形,再根据菱形的性质即可求解.【详解】解:∵⊙O与PA、PB相切于点A、B,∴PA=PB∵四边形APBC是平行四边形,∴四边形APBC是菱形,∴∠P=∠C=40°,∠PAC=140°∴∠CAB=∠PAC=70°故选D.【点睛】此题主要考查圆的切线长定理,解题的关键是熟知菱形的判定与性质.7、C【解析】根据配方法的定义即可得到答案.【详解】将原式变形可得:x2+4x+4-3=0,即(x+2)2=3,故答案选C.【点睛】本题主要考查了配方法解一元二次方程,解本题的要点在于将左边配成完全平方式,右边化为常数.8、C【分析】连接AC,OD,根据直径所对的圆周角是直角得到∠ACB是直角,求出∠ACD的度数,根据圆周角定理求出∠AOD的度数,再利用切线的性质即可得到∠ADP的度数.【详解】连接AC,OD.∵AB是直径,∴∠ACB=90°,∴∠ACD=125°﹣90°=35°,∴∠AOD=2∠ACD=70°.∵OA=OD,∴∠OAD=∠ADO,∴∠ADO=55°.∵PD与⊙O相切,∴OD⊥PD,∴∠ADP=90°﹣∠ADO=90°﹣55°=35°.故选:C.【点睛】本题考查了切线的性质、圆周角定理及推论,正确作出辅助线是解答本题的关键.9、C【分析】根据三角形中位线定理可得DE=BC,代入数据可得答案.【详解】解:∵线段AB,AC的中点为D,E,

∴DE=BC,

∵DE=20米,

∴BC=40米,

故选:C.【点睛】此题主要考查了三角形中位线定理,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.10、C【分析】根据二次函数图象与几何变换,将y换成-y,整理后即可得出翻折后的解析式,根据二次函数的性质即可求得结论.【详解】把二次函数y=﹣(x+1)2﹣3的图象沿着x轴翻折后得到的抛物线的解析式为﹣y=﹣(x+1)2﹣3,整理得:y=(x+1)2+3,所以,当x=﹣1时,有最小值3,故选:C.【点睛】本题考查了二次函数图象与几何变换,求得翻折后抛物线解析式是解题的关键.二、填空题(每小题3分,共24分)11、-【分析】把x=2代入原方程可得关于m的方程,解方程即可求出m的值.【详解】解:当x=2时,,解得:m=﹣.故答案为:﹣.【点睛】本题考查了一元二次方程的解的定义,属于基础题型,熟知一元二次方程解的概念是关键.12、1【分析】先设建筑物的高为h米,再根据同一时刻物高与影长成正比列出关系式求出h的值即可.【详解】解:设建筑物的高为h米,则=,解得h=1.故答案为:1.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.13、0或-1【分析】求关于的方程的根,其实就是求在二次函数中,当y=4时x的值,据此可解.【详解】解:∵抛物线与x轴的交点为(-4,0),(1,0),∴抛物线的对称轴是直线x=-1.5,∴抛物线与y轴的交点为(0,4)关于对称轴的对称点坐标是(-1,4),

∴当x=0或-1时,y=4,即=4,即=0∴关于x的方程ax2+bx=0的根是x1=0,x2=-1.故答案为:x1=0,x2=-1.【点睛】本题考查的是二次函数与一元二次方程的关系,能根据题意利用数形结合把求出方程的解的问题转化为二次函数的问题是解答此题的关键.14、-6【解析】根据反比例函数k的几何性质,矩形的性质即可解题.【详解】解:由反比例函数k的几何性质可知,k表示反比例图像上的点与坐标轴围成的矩形的面积,∵△ABO的面积为3,由矩形的性质可知,点A与坐标轴围成的矩形的面积=6,∵图像过第二象限,∴k=-6.【点睛】本题考查了反比例函数k的几何性质,属于简单题,熟悉性质内容是解题关键.15、54.6【分析】过P点作PD垂直直线b于点D,构造出两个直角三角形,设河两岸之间的距离约为x米,根据所设分别求出BD和AD的值,再利用AD=AB+BD得出含x的方程,解方程即可得出答案.【详解】过P点作PD垂直直线b于点D设河两岸之间的距离约为x米,即PD=x,则,可得:解得:x=54.6故答案为54.6【点睛】本题考查的是锐角三角函数的应用,解题关键是做PD垂直直线b于点D,构造出直角三角形.16、x≠1【解析】该题考查分式方程的有关概念根据分式的分母不为0可得X-1≠0,即x≠1那么函数y=的自变量的取值范围是x≠117、【分析】由题意可知总共有11个字母,求出字母的个数,利用概率公式进行求解即可.【详解】解:共有个字母,其中有个,所以选中字母“”的概率为.故答案为:.【点睛】本题考查概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18、4【分析】根据等腰三角形的性质和勾股定理求出AC的值,根据等面积法求出OA的值,OA和AC分别是点C的横纵坐标,又点C在反比例函数图像上,即可得出答案.【详解】∵△ABC为等腰直角三角形,AB=2∴BC=2,解得:OA=∴点C的坐标为又点C在反比例函数图像上∴故答案为4.【点睛】本题考查的是反比例函数,解题关键是根据等面积法求出点C的横坐标.三、解答题(共66分)19、(1)作图见解析,(1,-4);(2)作图见解析,(2,2);(3)(,)【分析】(1)将点A、B、C分别向下平移4个单位得到对应点,再顺次连接可得;(2)利用位似图形的性质得出对应点位置,进而得出答案;(3)根据(2)中变换的规律,即可写出变化后点C的对应点C2的坐标.【详解】解:(1)如图,△A1B1C1即为所求,点C1的坐标是(1,-4),故答案为:(1,-4);(2)如图所示,△A2BC2即为所求,点C2的坐标是(2,2),故答案为:(2,2);(3)若M(a,b)为线段AC上任一点,则点M的对应点M2的坐标为:(,).故答案为:(,).【点睛】此题主要考查了位似变换,正确得出图形变化后边长是解题关键.20、(1),;(2),;(3),证明见解析;(4)【分析】(1)根据三角形的中位线得出;,进而得到计算即可得出答案;(2)连接EF,中位线的性质以及求出AP、BP、EP和FP的长度再根据勾股定理求出AE和BF的长度即可得出答案;(3)连接EF,根据中位线的性质得出,根据勾股定理求出AE与AP和EP的关系以及BF与BP和FP的关系,即可得出答案;(4)取的中点,连接,结合题目求出四边形是平行四边形得出AP=FP即可得到是“中垂三角形”,根据第三问得出的结论代入,即可得出答案(连接,交于点,证明求得是的中线,进而得出是“中垂三角形”,再结合第三问得出的结论计算即可得出答案).【详解】解:(1)∵是的中线,∴是的中位线,∴,且,易得.∵,∴,∴.由勾股定理,得,∴.(2)如图2,连结.∵是的中线,∴是的中位线,∴,且,易得..∵,∴,∴.由勾股定理,得,∴.(3)之间的关系是.证明如下:如图3,连结.∵是的中线,∴是的中位线.∴,且,易得.在和中,∵,,∴.∴.∴,即.(4)解法1:设的交点为.如图4,取的中点,连接.∵分别是的中点,是的中点,∴.又∵,∴.∵四边形是平行四边形,∴,∴,∴四边形是平行四边形,∴,∴是“中垂三角形”,∴,即,解得.(另:连接,交于点,易得是“中垂三角形”,解法类似于解法1,如图5)解法2:如图6,连接,延长交的延长线于点.在中,∵分别是的中点,∴.∵,∴.又∵四边形为平行四边形,∴,易得,∴,∴,∴是的中线,∴是“中垂三角形”,∴.∵,∴.∴,解得.∵是的中位线,∴.【点睛】本题考查的是相似三角形的判定与性质、勾股定理以及全等三角形的判定与性质,注意类比思想在本题中的应用,第四问方法一得出是解决本题的关键.21、(1)-1;(2)7.5;(3)x>1或﹣4<x<0.【分析】(1)把A点坐标分别代入反比例函数与一次函数解析式,求出k和b的值,把B点坐标代入反比例函数解析式求出n的值即可;(2)设直线y=x+3与y轴的交点为C,由S△AOB=S△AOC+S△BOC,根据A、B两点坐标及C点坐标,利用三角形面积公式即可得答案;(3)利用函数图像,根据A、B两点坐标即可得答案.【详解】(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5,(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.【点睛】本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=中k的几何意义,这里体现了数形结合的思想.22、(1);(2),P(,);(3)N(3,0)或N(2+,1+)或N(5,6)或N(,1﹣).【分析】(1)将点代入,求出,将点代入,即可求函数解析式;(2)如图,过作轴,交于,求出的解析式,设,表示点坐标,表示长度,利用,建立二次函数模型,利用二次函数的性质求最值即可,(3)可证明△MAD是等腰直角三角形,由△QMN与△MAD相似,则△QMN是等腰直角三角形,设①当MQ⊥QN时,N(3,0);②当QN⊥MN时,过点N作NR⊥x轴,过点M作MS⊥RN交于点S,由(AAS),建立方程求解;③当QN⊥MQ时,过点Q作x轴的垂线,过点N作NS∥x轴,过点作R∥x轴,与过M点的垂线分别交于点S、R;可证△MQR≌△QNS(AAS),建立方程求解;④当MN⊥NQ时,过点M作MR⊥x轴,过点Q作QS⊥x轴,过点N作x轴的平行线,与两垂线交于点R、S;可证△MNR≌△NQS(AAS),建立方程求解.【详解】解:(1)将点代入,∴,将点代入,解得:,∴函数解析式为;(2)如图,过作轴,交于,设为,因为:所以:,解得:,所以直线AB为:,设,则,所以:,所以:,当,,此时:.(3)∵,∴,∴△MAD是等腰直角三角形.∵△QMN与△MAD相似,∴△QMN是等腰直角三角形,设①如图1,当MQ⊥QN时,此时与重合,N(3,0);②如图2,当QN⊥MN时,过点N作NR⊥x轴于,过点M作MS⊥RN交于点S.∵QN=MN,∠QNM=90°,∴(AAS),∴,∴,,∴,∴;③如图3,当QN⊥MQ时,过点Q作x轴的垂线,过点N作NS∥x轴,过点作R∥x轴,与过点的垂线分别交于点S、R;∵QN=MQ,∠MQN=90°,∴△MQR≌△QNS(AAS),,,∴,∴t=5,(舍去负根)∴N(5,6);④如图4,当MN⊥NQ时,过点M作MR⊥x轴,过点Q作QS⊥x轴,过点N作x轴的平行线,与两垂线交于点R、S;∵QN=MN,∠MNQ=90°,∴△MNR≌△NQS(AAS),∴SQ=RN,∴,∴.,∴,∴;综上所述:或或N(5,6)或.【点睛】本题考查二次函数的综合;熟练掌握二次函数的图象及性质,数形结合解题是关键.23、(1),;(2)C(-3,0),S=6;(3)或【分析】(1)根据题意把A的坐标代入反比例函数的图像与一次函数,分别求出k和b,从而即可确定反比例函数和一次函数的解析式;(2)由题意先求出C的坐标,再利用三角形面积公式求出ΔAOC的面积;(3)根据函数的图象即可得出一次函数的值大于反比例函数的值的x的取值范围.【详解】解:(1)将点A(1,4)代入反比例函数的图像与一次函数,求得以及,所以反比例函数和一次函数的解析式分别为:和;(2)因为C在一次函数的图象上以及x轴上,所以求得C坐标为(-3,0),则有OC=3,ΔAOC以OC为底的高为4,所以ΔAOC的面积为:;(3)由可知一次函数的值大于反比例函数的值,把B(m,-2)代入,得出m=-2,即B(-2,-2),此时当或时,一次函数的值大于反比例函数的值.【点睛】本题考查一次函数与反比例函数的交

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论