版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.2.如图,已知二次函数()的图象与x轴交于点A(﹣1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:①当x>3时,y<0;②3a+b<0;③;④;其中正确的结论是()A.①③④ B.①②③ C.①②④ D.①②③④3.如图,在菱形中,,,是的中点,将绕点逆时针旋转至点与点重合,此时点旋转至处,则点在旋转过程中形成的、线段、点在旋转过程中形成的与线段所围成的阴影部分的面积为()A. B. C. D.4.如图,在△ABC中,D,E,F分别为BC,AB,AC上的点,且EF∥BC,FD∥AB,则下列各式正确的是()A. B. C. D.5.关于的二次方程的一个根是0,则a的值是()A.1 B.-1 C.1或-1 D.0.56.在▱ABCD中,∠ACB=25°,现将▱ABCD沿EF折叠,使点C与点A重合,点D落在G处,则∠GFE的度数()A.135° B.120° C.115° D.100°7.下列标志图中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.8.已知:如图,矩形ABCD中,AB=2cm,AD=3cm.点P和点Q同时从点A出发,点P以3cm/s的速度沿A→D方向运动到点D为止,点Q以2cm/s的速度沿A→B→C→D方向运动到点D为止,则△APQ的面积S(cm2)与运动时间t(s)之间函数关系的大致图象是()A. B.C. D.9.方程的解是()A. B. C. D.10.反比例函数经过点(1,),则的值为()A.3 B. C. D.二、填空题(每小题3分,共24分)11.如图,的半径为,双曲线的关系式分别为和,则阴影部分的面积是__________.12.如图,在一个正方形围栏中均为地散步着许多米粒,正方形内有一个圆(正方形的内切圆)一只小鸡在围栏内啄食,则小鸡正在圆内区域啄食的概率为________.13.抛物线的顶点坐标是__________.14.如图,△ABC和△A′B′C是两个完全重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A′落在AB边上时,CA′旋转所构成的扇形的弧长为_______cm.15.已知二次函数y=ax2+bx+c的图象如图所示,则a_____1,b_____1,c_____1.16.已知一个扇形的半径为5cm,面积是20cm2,则它的弧长为_____.17.如图,竖直放置的一个铝合金窗框由矩形和弧形两部分组成,AB=m,AD=2m,弧CD所对的圆心角为∠COD=120°.现将窗框绕点B顺时针旋转横放在水平的地面上,这一过程中,窗框上的点到地面的最大高度为__m.18.如图,等腰直角的顶点在正方形的对角线上,所在的直线交于点,交于点,连接,.下列结论中,正确的有_________(填序号).①;②是的一个三等分点;③;④;⑤.三、解答题(共66分)19.(10分)如图,在矩形ABCD中,AB=3,BC=4,点E是线段AC上的一个动点且=k(0<k<1),点F在线段BC上,且DEFH为矩形;过点E作MN⊥BC,分别交AD,BC于点M,N.(1)求证:△MED∽△NFE;(2)当EF=FC时,求k的值.(3)当矩形EFHD的面积最小时,求k的值,并求出矩形EFHD面积的最小值.20.(6分)太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D在BA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米)(参考数据:sin18°≈0.31,cos18°≈0.1.tan18°≈0.32,sin36°≈0.2.cos36°≈0.81,tan36°≈0.73)21.(6分)已知二次函数y=a−4x+c的图象过点(−1,0)和点(2,−9),(1)求该二次函数的解析式并写出其对称轴;(2)当x满足什么条件时,函数值大于0?(不写求解过程),22.(8分)如图,学校教学楼上悬挂一块长为的标语牌,即.数学活动课上,小明和小红要测量标语牌的底部点到地面的距离.测角仪支架高,小明在处测得标语牌底部点的仰角为,小红在处测得标语牌顶部点的仰角为,,依据他们测量的数据能否求出标语牌底部点到地面的距离的长?若能,请计算;若不能,请说明理由(图中点,,,,,,在同一平面内)(参考数据:,,23.(8分)如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB.⑴求证:BE是⊙O的切线;⑵若BC=,AC=5,求圆的直径AD的长.24.(8分)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:DE平分∠BEP;(3)若⊙O的半径为10,CF=2EF,求BE的长.25.(10分)某公司研发了一款成本为50元的新型玩具,投放市场进行试销售.其销售单价不低于成本,按照物价部门规定,销售利润率不高于90%,市场调研发现,在一段时间内,每天销售数量y(个)与销售单价x(元)符合一次函数关系,如图所示:(1)根据图象,直接写出y与x的函数关系式;(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元(3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?26.(10分)(1)计算:;(2)解方程:.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据中心对称图形的定义:旋转180度之后与自身重合称为中心对称,轴对称是折叠后能够与自身完全重合称为轴对称,根据定义去解题.【详解】解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、不是中心对称图形,是轴对称图形,故本选项错误;D、既是中心对称图形又是轴对称图形,故本选项正确.故选:D.【点睛】本题考查的是中心对称图形和轴对称图形的定义.2、B【分析】①由抛物线的对称性可求得抛物线与x轴令一个交点的坐标为(3,1),当x>3时,y<1,故①正确;②抛物线开口向下,故a<1,∵,∴2a+b=1.∴3a+b=1+a=a<1,故②正确;③设抛物线的解析式为y=a(x+1)(x﹣3),则,令x=1得:y=﹣3a.∵抛物线与y轴的交点B在(1,2)和(1,3)之间,∴.解得:,故③正确;④.∵抛物线y轴的交点B在(1,2)和(1,3)之间,∴2≤c≤3,由得:,∵a<1,∴,∴c﹣2<1,∴c<2,与2≤c≤3矛盾,故④错误.【详解】解:①由抛物线的对称性可求得抛物线与x轴令一个交点的坐标为(3,1),当x>3时,y<1,故①正确;②抛物线开口向下,故a<1,∵,∴2a+b=1.∴3a+b=1+a=a<1,故②正确;③设抛物线的解析式为y=a(x+1)(x﹣3),则,令x=1得:y=﹣3a.∵抛物线与y轴的交点B在(1,2)和(1,3)之间,∴.解得:,故③正确;④.∵抛物线y轴的交点B在(1,2)和(1,3)之间,∴2≤c≤3,由得:,∵a<1,∴,∴c﹣2<1,∴c<2,与2≤c≤3矛盾,故④错误.故选B.【点睛】本题考查二次函数图象与系数的关系,结合图像,数形结合的思想的运用是本题的解题关键..3、C【分析】根据菱形的性质可得AD=AB=4,∠DAB=180°-,AE=,然后根据旋转的性质可得:S△ABE=S△ADF,∠FAE=∠DAB=60°,最后根据S阴影=S扇形DAB+S△ADF―S△ABE―S扇形FAE即可求出阴影部分的面积.【详解】解:∵在菱形中,,,是的中点,∴AD=AB=4,∠DAB=180°-,AE=,∵绕点逆时针旋转至点与点重合,此时点旋转至处,∴S△ABE=S△ADF,∠FAE=∠DAB=60°∴S阴影=S扇形DAB+S△ADF―S△ABE―S扇形FAE=S扇形DAB―S扇形FAE==故选:C.【点睛】此题考查的是菱形的性质、旋转的性质和扇形的面积公式,掌握菱形的性质定理、旋转的性质和扇形的面积公式是解决此题的关键.4、D【分析】根据EF∥BC,FD∥AB,可证得四边形EBDF是平行四边形,利用平行线分线段成比例逐一验证选项即可.【详解】解:∵EF∥BC,FD∥AB,∴四边形EBDF是平行四边形,∴BE=DF,EF=BD,∵EF∥BC,∴,,∴,故B错误,D正确;∵DF∥AB,∴,,∴,故A错误;∵,,故C错误;故选:D.【点睛】本题考查了平行四边形的的判定,平行线分线段成比例的定理,掌握平行线分线段成比例定理是解题的关键.5、B【分析】把代入可得,根据一元二次方程的定义可得,从而可求出的值.【详解】把代入,得:,解得:,∵是关于x的一元二次方程,∴,即,∴的值是,故选:B.【点睛】本题考查了对一元二次方程的定义,一元二次方程的解,以及一元二次方程的解法等知识点的理解和运用,注意隐含条件.6、C【详解】解:根据图形的折叠可得:AE=EC,即∠EAC=∠ECA=25°,∠FEC=∠AEF,∠DFE=∠GFE,又∵∠EAC+∠ECA+∠AEC=180°,∴∠AEC=130°,∴∠FEC=65°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DFE+∠FEC=180°,∴∠DFE=115°,∴∠GFE=115°,故选C.考点:1.平行四边形的性质2.图形的折叠的性质.7、B【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故选B.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.8、C【分析】研究两个动点到矩形各顶点时的时间,分段讨论求出函数解析式即可求解.【详解】解:分三种情况讨论:(1)当0≤t≤1时,点P在AD边上,点Q在AB边上,∴S=,∴此时抛物线经过坐标原点并且开口向上;(1)当1<t≤1.5时,点P与点D重合,点Q在BC边上,∴S==2,∴此时,函数值不变,函数图象为平行于t轴的线段;(2)当1.5<t≤2.5时,点P与点D重合,点Q在CD边上,∴S=×2×(7﹣1t))=﹣t+.∴函数图象是一条线段且S随t的增大而减小.故选:C.【点睛】本题考查了二次函数与几何问题,用分类讨论的数学思想解题是关键,解答时注意研究动点到达临界点时的时间以此作为分段的标准,逐一分析求解.9、B【解析】按照系数化1、开平方的步骤求解即可.【详解】系数化1,得开平方,得故答案为B.【点睛】此题主要考查一元二次方程的求解,熟练掌握,即可解题.10、B【解析】此题只需将点的坐标代入反比例函数解析式即可确定k的值.【详解】把已知点的坐标代入解析式可得,k=1×(-1)=-1.故选:B.【点睛】本题主要考查了用待定系数法求反比例函数的解析式,.二、填空题(每小题3分,共24分)11、2π【分析】根据反比例函数的对称性可得图中阴影部分的面积为半圆面积,进而可得答案.【详解】解:双曲线和的图象关于x轴对称,根据图形的对称性,把第三象限和第四象限的阴影部分的面积拼到第二和第一象限中的阴影中,可得阴影部分就是一个扇形,并且扇形的圆心角为180°,半径为2,所以S阴影=.故答案为:2π.【点睛】本题考查的是反比例函数和阴影面积的计算,题目中的两条双曲线关于x轴对称,圆也是一个对称图形,可以得到图中阴影部分的面积等于圆心角为180°,半径为2的扇形的面积,这是解题的关键.12、【分析】设正方形的边长为a,再分别计算出正方形与圆的面积,计算出其比值即可.【详解】解:设正方形的边长为a,则S正方形=a2,因为圆的半径为,所以S圆=π()2=,所以“小鸡正在圆圈内”啄食的概率为:故答案为:【点睛】本题考查几何概率,掌握正方形面积公式正确计算是解题关键.13、(-1,-3)【分析】根据抛物线顶点式得顶点为可得答案.【详解】解:∵抛物线顶点式得顶点为,∴抛物线的顶点坐标是(-1,-3)故答案为(-1,-3).【点睛】本题考查了二次函数的顶点式的顶点坐标,熟记二次函数的顶点式及坐标是解题的关键.14、【分析】根据Rt△ABC中的30°角所对的直角边是斜边的一半、直角三角形斜边上的中线等于斜边的一半以及旋转的性质推知△AA′C是等边三角形,所以根据等边三角形的性质利用弧长公式来求CA′旋转所构成的扇形的弧长.【详解】解:∵在Rt△ABC中,∠B=30°,AB=10cm,∴AC=AB=5cm.根据旋转的性质知,A′C=AC,∴A′C=AB=5cm.∴点A′是斜边AB的中点,∴AA′=AB=5cm.∴AA′=A′C=AC,∴∠A′CA=60°.∴CA′旋转所构成的扇形的弧长为:(cm).故答案为:.15、<<>【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】解:由抛物线的开口方向向下可推出a<1;因为对称轴在y轴左侧,对称轴为x=<1,又因为a<1,∴b<1;由抛物线与y轴的交点在y轴的正半轴上,∴c>1.【点睛】本题考查了二次函数的图象和性质,属于简单题,熟悉二次函数的图象是解题关键.16、1【分析】利用扇形的面积公式S扇形弧长×半径,代入可求得弧长.【详解】设弧长为L,则20L×5,解得:L=1.故答案为:1.【点睛】本题考查了扇形的面积公式,掌握扇形的面积等于弧长和半径乘积的一半是解答本题的关键.17、()【分析】连接OB,过O作OH⊥BC于H,过O作ON⊥CD于N,根据已知条件求出OC和OB的长即可.【详解】连接OB,过O作OH⊥BC于H,过O作ON⊥CD于N,∵∠COD=120°,CO=DO,∴∠OCD=∠ODC=30°,∵ON⊥CO,∴CN=DN=CD=AB=m,∴ON=CN=m,OC=1m,∵ON⊥BC,∴四边形OHCN是矩形,∴CH=ON=m,OH=CN=m,∴BH=BC-CH=m,∴OB==m,∴在这一过程中,窗框上的点到地面的最大高度为(+1)m,故答案为:(+1).【点睛】本题考查了垂径定理,矩形的性质和判定,勾股定理,掌握知识点是解题关键.18、①②④【分析】根据△CBE≌△CDF即可判断①;由△CBE≌△CDF得出∠EBC=∠FDC=45°进而得出△DEF为直角三角形结合即可判断②;判断△BEN是否相似于△BCE即可判断③;根据△BNE∽△DME即可判断④;作EH⊥BC于点H得出△EHC∽△FDE结合tan∠HEC=tan∠DFE=2,设出线段比即可判断⑤.【详解】∵△CEF为等腰直角三角形∴CE=CF,∠ECF=90°又ABCD为正方形∴∠BCD=90°,BC=DC又∠BCD=∠BCE+∠ECD∠ECF=∠ECD+∠DCF∴∠DCF=∠BCE∴△CBE≌△CDF(SAS)∴BE=DF,故①正确;∴∠EBC=∠FDC=45°故∠EDF=∠EDC+∠FDC=90°又∴E是BD的一个三等分点,故②正确;∵∴即判定△BEN∽△BCE∵△ECF为等腰直角三角形,BD为正方形对角线∴∠CFE=45°=∠EDC∴∠CFE+∠MCF=∠EDC+∠DEM∴∠MCF=∠DEM然而题目并没有告诉M是EF的中点∴∠ECM≠∠MCF∴∠ECM≠∠DEM≠∠BNE∴不能判定△BEN∽△BCE∴不能得出进而不能得出,故③错误;由题意可知△BNE∽△DME又BE=2DE∴BN=2DM,故④正确;作EH⊥BC于点H∵∠MCF=∠DEM又∠HCE=∠DCF∴∠HCE=∠DEM又∠EHC=∠FDE=90°∴△EHC∽△FDE∴tan∠HEC=tan∠DFE=2可设EH=x,则CH=2xEC=∴sin∠BCE=,故⑤错误;故答案为①②④.【点睛】本题考查的是正方形综合,难度系数较大,涉及到了相似三角形的判定与性质,勾股定理、等腰直角三角形的性质以及方程的思想等,需要熟练掌握相关基础知识.三、解答题(共66分)19、(1)见解析;(2);(3)矩形EFHD的面积最小值为,k=.【分析】(1)由矩形的性质得出∠B=90°,AD=BC=4,DC=AB=3,AD∥BC,证出∠EMD=∠FNE=90°,∠NEF=∠MDE,即可得出△MED∽△NFE;(2)设AM=x,则MD=NC=4﹣x,由三角函数得出ME=x,得出NE=3﹣x,由相似三角形的性质得出=,求出NF=x,得出FC=4﹣x﹣x=4﹣x,由勾股定理得出EF==,当EF=FC时,得出方程4﹣x=,解得x=4(舍去),或x=,进而得出答案;(3)由相似三角形的性质得出==,得出DE=EF,求出矩形EFHD的面积=DE×EF=EF2==,由二次函数的性质进而得出答案.【详解】(1)证明:∵四边形ABCD是矩形,∴∠B=90°,AD=BC=4,DC=AB=3,AD∥BC,∵MN⊥BC,∴MN⊥AD,∴∠EMD=∠FNE=90°,∵四边形DEFH是矩形,∴∠MED+∠NEF=90°,∴∠NEF=∠MDE,∴△MED∽△NFE;(2)解:设AM=x,则MD=NC=4﹣x,∵tan∠DAC=tan∠MAE===,∴ME=x,∴NE=3﹣x,∵△MED∽△NFE,∴=,即=,解得:NF=x,∴FC=4﹣x﹣x=4﹣x,EF==,当EF=FC时,4﹣x=,解得:x=4或x=,由题意可知x=4不合题意,当x=时,AE=,∵AC===5,∴k==;(3)解:由(1)可知:△MED∽△NFE,∴,∴DE=EF,∴矩形EFHD的面积=DE×EF=EF2==∴当x﹣=0时,即x=时,矩形EFHD的面积最小,最小值为:,∵cos∠MAE===,∴AE=AM=×=,此时k==.【点睛】本题考查了矩形与相似三角形,以及二次函数的应用,解题的关键是利用相似三角形的性质建立二次函数模型是解题的关键.20、1.9米【解析】试题分析:在直角三角形BCD中,由BC与sinB的值,利用锐角三角函数定义求出CD的长,在直角三角形ACD中,由∠ACD度数,以及CD的长,利用锐角三角函数定义求出AD的长即可.试题解析:∵∠BDC=90°,BC=10,sinB=,∴CD=BC•sinB=10×0.2=5.9,∵在Rt△BCD中,∠BCD=90°﹣∠B=90°﹣36°=54°,∴∠ACD=∠BCD﹣∠ACB=54°﹣36°=18°,∴在Rt△ACD中,tan∠ACD=,∴AD=CD•tan∠ACD=5.9×0.32=1.888≈1.9(米),则改建后南屋面边沿增加部分AD的长约为1.9米.考点:解直角三角形的应用21、(1),;(2)当x<或x>5时,函数值大于1.【分析】(1)把(-1,1)和点(2,-9)代入y=ax2-4x+c,得到一个二元一次方程组,求出方程组的解,即可得到该二次函数的解析式,然后求出对称轴;(2)求得抛物线与x轴的交点坐标后即可确定正确的答案.【详解】解:(1)∵二次函数的图象过点(−1,1)和点(2,−9),∴,解得:,∴;∴对称轴为:;(2)令,解得:,,如图:∴点A的坐标为(,1),点B的坐标为(5,1);∴结合图象得到,当x<或x>5时,函数值大于1.【点睛】本题主要考查对用待定系数法求二次函数的解析式及抛物线与x轴的交点坐标的知识,解题的关键是正确的求得抛物线的解析式.22、能,点到地面的距离的长约为.【分析】延长交于,根据等腰直角三角形的性质得到,根据正切的定义求出,结合图形计算即可.【详解】能,理由如下:延长交于,则,,,设,则,,在中,,则,,解得,,则,答:点到地面的距离的长约为.【点睛】本题考查的是解直角三角形的应用仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.23、(1)详见解析;(2)1【分析】(1)先根据等弦所对的劣弧相等,再结合∠EBD=∠CAB从而得到∠BAD=∠EBD,最后用直径所对的圆周角为直角即可;
(2)利用三角形的中位线先求出OM,再用勾股定理求出半径r,最后得到直径的长.【详解】解:⑴证明:连接OB,CD,OB、CD交于点M∵BC=BD,∴∠CAB=∠BAD.∵OA=OB,∴∠BAD=∠OBA.∴∠CAB=∠OBA.∴OB∥AC.又AD是直径,∴∠ABD=∠ACD=90°,又∠EBD=∠CAB,∠CAB=∠OBA.∴∠OBE=90°,即OB⊥BE.又OB是半径,∴BE是⊙O的切线.⑵∵OB∥AC,OA=OD,AC=5,.∴OM=2.5,BM=OB-2.5,OB⊥CD设⊙O的半径为r,则在Rt△OMD中:MD2=r2-2.52;在Rt△BMD中:MD2=BD2-(r-2.5)2,BD=BC=.∴r1=3,r2=-0.5(舍).∴圆的直径AD的长是1.【点睛】此题是切线的判定,主要考查了圆周角的性质,切线的判定,勾股定理等,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论