




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在平面直角坐标系中,△ABC与△A1B1C1位似,位似中心是原点O,若△ABC与△A1B1C1的相似比为1:2,且点A的坐标是(1,3),则它的对应点A1的坐标是()A.(-3,-1) B.(-2,-6) C.(2,6)或(-2,-6) D.(-1,-3)2.抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度3.下列交通标志中,是中心对称图形的是()A. B. C. D.4.如图,数轴上的点可近似表示的值是()A.点A B.点B C.点C D.点D5.在一个不透明的盒子里装有个黄色、个蓝色和个红色的小球,它们除颜色外其他都完全相同,将小球摇匀后随机摸出一个球,摸出的小球为红色的概率为()A. B. C. D.6.在平面直角坐标系中,抛物线与轴交于点,与轴交于点,则的面积是()A.6 B.10 C.12 D.157.已知函数是反比例函数,则此反比例函数的图象在()A.第一、三象限 B.第二、四象限C.第一、四象限 D.第二、三象限8.下列函数,当时,随着的增大而减小的是()A. B. C. D.9.若整数使关于的不等式组至少有4个整数解,且使关于的分式方程有整数解,那么所有满足条件的的和是()A. B. C. D.10.某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30 B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30 D.(30﹣2x)(20﹣x)=×20×3011.的值是()A. B. C. D.12.在中,,另一个和它相似的三角形最长的边是,则这个三角形最短的边是()A. B. C. D.二、填空题(每题4分,共24分)13.将一元二次方程写成一般形式_____.14.△ABC中,∠C=90°,tanA=,则sinA+cosA=_____.15.点关于原点的对称点的坐标为________.16.不透明布袋里有5个红球,4个白球,往布袋里再放入x个红球,y个白球,若从布袋里摸出白球的概率为,则y与x之间的关系式是_____.17.圆锥的母线长为5cm,高为4cm,则该圆锥的全面积为_______cm2.18.如图,抛物线y=﹣(x+1)(x﹣9)与坐标轴交于A、B、C三点,D为顶点,连结AC,BC.点P是该抛物线在第一象限内上的一点.过点P作y轴的平行线交BC于点E,连结AP交BC于点F,则的最大值为_______.三、解答题(共78分)19.(8分)已知:如图,抛物线y=﹣x2+2x+3交x轴于点A、B,其中点A在点B的左边,交y轴于点C,点P为抛物线上位于x轴上方的一点.(1)求A、B、C三点的坐标;(2)若△PAB的面积为4,求点P的坐标.20.(8分)有甲乙两个不透明的布袋,甲布袋装有个形状和重量完全相同的小球,分别标有数字和;乙布袋装有个形状和重量完全相同的小球,分别标有数字,和.先从甲布袋中随机取出一个小球,将小球上标有的数字记作;再从乙布袋中随机取出一个小球,再将小球标有的数字记作.(1)用画树状图或列表法写出两次摸球的数字可能出现的所有结果;(2)若从甲、乙两布袋中取出的小球上面的数记作点的坐标,求点在一次函数图象上的概率是多少?21.(8分)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16cm,请求出球的半径.22.(10分)在一个不透明的盒子里装有4个标有1,2,3,4的小球,它们形状、大小完全相同.小明从盒子里随机取出一个小球,记下球上的数字,作为点P的横坐标x,放回然后再随机取出一个小球,记下球上的数字,作为点P的纵坐标y.(1)画树状图或列表,写出点P所有可能的坐标;(2)求出点P在以原点为圆心,5为半径的圆上的概率.23.(10分)如图所示,以的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度(单位:)与飞行时间(单位:)之间具有关系式.解答以下问题:(1)球的飞行高度能否达到?如能,需要飞行多少时间?(2)球飞行到最高点时的高度是多少?24.(10分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,求线段AE的长.25.(12分)如图,是的弦,为半径的中点,过作交弦于点,交于点,且.(1)求证:是的切线;(2)连接、,求的度数:(3)如果,,,求的半径.26.蓄电池的电压为定值,使用此电源时,电流I(A)是电阻R(Ω)的反比例函数,其图象如图所示.(1)求这个反比例函数的表达式;(2)当R=10Ω时,求电流I(A).
参考答案一、选择题(每题4分,共48分)1、C【解析】根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或,即可求出答案.【详解】由位似变换中对应点坐标的变化规律得:点的对应点的坐标是或,即点的坐标是或故选:C.【点睛】本题考查了位似变换中对应点坐标的变化规律,理解位似的概念,并熟记变化规律是解题关键.2、D【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x﹣2)2﹣1的图象.故选D.点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.3、D【解析】根据中心对称图形的概念判断即可.【详解】A、不是中心对称图形;B、不是中心对称图形;C、不是中心对称图形;D、是中心对称图形.故选D.【点睛】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、C【分析】先把代数式进行化简,然后进行无理数的估算,即可得到答案.【详解】解:,∵,∴,∴点C符合题意;故选:C.【点睛】本题考查了二次根式的化简,无理数的估算,解题的关键是掌握运算法则,正确的进行化简.5、D【分析】让红球的个数除以球的总个数即为所求的概率.【详解】解:∵盒子中一共有3+2+4=9个球,红色的球有4个∴摸出的小球为红色的概率为故选D【点睛】此题主要考查了概率的定义:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6、A【分析】根据题意,先求出点A、B、C的坐标,然后根据三角形的面积公式,即可求出答案.【详解】解:∵抛物线与轴交于点,∴令,则,解得:,,∴点A为(1,0),点B为(,0),令,则,∴点C的坐标为:(0,);∴AB=4,OC=3,∴的面积是:=;故选:A.【点睛】本题考查了二次函数与坐标轴的交点,解题的关键是熟练掌握二次函数的性质,求出抛物线与坐标轴的交点.7、A【分析】首先根据反比例函数的定义,即可得出,进而得出反比例函数解析式,然后根据其性质,即可判定其所在的象限.【详解】根据已知条件,得即∴函数解析式为∴此反比例函数的图象在第一、三象限故答案为A.【点睛】此题主要考查反比例函数的性质,熟练掌握,即可解题.8、D【分析】根据各个选项中的函数解析式,可以判断出当x>0时,y随x的增大如何变化,从而可以解答本题.【详解】在y=2x+1中,当x>0时,y随x的增大而增大,故选项A不符合题意;在中,当x>0时,y随x的增大而增大,故选项B不符合题意;在中,当x>0时,y随x的增大而增大,故选项C不符合题意;在y=−x2−2x=−(x+1)2+1中,当x>0时,y随x的增大而减小,故选项D符合题意;故选:D.【点睛】本题考查一次函数的性质、反比例函数的性质、二次函数的性质,解答本题的关键是明确题意,可以判断出当x>0时,y随x的增大如何变化.9、A【分析】根据不等式组求出a的范围,然后再根据分式方程求出a的取值范围,综合考虑确定a的值,再求和即可.【详解】解不等式组得:∵至少有4个整数解∴,解得分式方程去分母得解得:∵分式方程有整数解,a为整数∴、、、∴、、、、、、、∵,∴又∵∴或满足条件的的和是-13,故选A.【点睛】本题考查了不等式组与分式方程,解题的关键是解分式方程时需要舍去增根的情况.10、B【分析】根据等量关系:空白区域的面积=矩形空地的面积,列方程即可.【详解】设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=×20×30,故选:B.【点睛】本题考查了一元二次方程的实际应用-几何问题,理清题意找准等量关系是解题的关键.11、D【解析】根据负整数指数幂的运算法则进行求解即可.【详解】=,故选D.【点睛】本题考查了负整数指数幂,熟练掌握(a≠0,p为正整数)是解题的关键.12、B【分析】设另一个三角形最短的一边是x,根据相似三角形对应边成比例即可得出结论.【详解】设另一个三角形最短的一边是x,∵△ABC中,AB=12,BC=1,CA=24,另一个和它相似的三角形最长的一边是36,∴,解得x=1.故选:C.【点睛】本题考查的是相似三角形的性质,熟知相似三角形的对应边成比例是解答此题的关键.二、填空题(每题4分,共24分)13、【分析】先去括号,然后移项,最后变形为一般式.【详解】故答案为:.【点睛】本题考查完全平方公式、去括号和移项,需要注意,移项是需要变号的.14、【解析】∵在△ABC中,∠C=90°,,∴可设BC=4k,AC=3k,∴由勾股定理可得AB=5k,∴sinA=,cosA=,∴sinA+cosA=.故答案为.15、【分析】根据点关于原点对称,横纵坐标都变号,即可得出答案.【详解】根据对称变换规律,将P点的横纵坐标都变号后可得点,故答案为.【点睛】本题考查坐标系中点的对称变换,熟记变换口诀“关于谁对称,谁不变,另一个变号;关于原点对称,两个都变号”.16、x﹣2y=1.【分析】根据从布袋里摸出白球的概率为,列出=,整理即可得.【详解】根据题意得=,整理,得:x﹣2y=1,故答案为:x﹣2y=1.【点睛】本题考查概率公式的应用,熟练掌握概率公式建立方程是解题的关键.17、14π【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径1+底面周长×母线长÷1.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底面圆的半径为3,则底面周长=6π,∴侧面面积=×6π×5=15π;∴底面积为=9π,∴全面积为:15π+9π=14π.故答案为14π.【点睛】本题利用了圆的周长公式和扇形面积公式求解.18、【分析】根据抛物线的解析式求得A、B、C的坐标,进而求得AB、BC、AC的长,根据待定系数法求得直线BC的解析式,作PN⊥BC,垂足为N.先证明△PNE∽△BOC,由相似三角形的性质可知PN=PE,然后再证明△PFN∽△AFC,由相似三角形的性质可得到PF:AF与m的函数关系式,从而可求得的最大值.【详解】∵抛物线y=﹣(x+1)(x﹣9)与坐标轴交于A、B、C三点,∴A(﹣1,0),B(9,0),令x=0,则y=1,∴C(0,1),∴BC,设直线BC的解析式为y=kx+b.∵将B、C的坐标代入得:,解得k=﹣,b=1,∴直线BC的解析式为y=﹣x+1.设点P的横坐标为m,则纵坐标为﹣(m+1)(m﹣9),点E(m,﹣m+1),∴PE=﹣(m+1)(m﹣9)﹣(﹣m+1)=﹣m2+1m.作PN⊥BC,垂足为N.∵PE∥y轴,PN⊥BC,∴∠PNE=∠COB=90°,∠PEN=∠BCO.∴△PNE∽△BOC.∴===.∴PN=PE=(-m2+1m).∵AB2=(9+1)2=100,AC2=12+12=10,BC2=90,∴AC2+BC2=AB2.∴∠BCA=90°,又∵∠PFN=∠CFA,∴△PFN∽△AFC.∴===﹣m2+m=﹣(m﹣)2+.∵,∴当m时,的最大值为.故答案为:.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数图象上点的坐标特征、一次函数的解析式、等腰三角形的性质、勾股定理的应用以及相似三角形的证明与性质,求得与m的函数关系式是解题的关键.三、解答题(共78分)19、(1)A(﹣1,0),B(3,0),C(0,3);(2)P点坐标为(1﹣,2),(1+,2)【分析】(1)当时,可求点A,点B坐标,当,可求点C坐标;(2)设点P的纵坐标为,利用三角形面积公式可求得,代入y=﹣x2+2x+3即可求得点P的横坐标,从而求得答案.【详解】(1)对于抛物线y=﹣x2+2x+3,令y=0,得到﹣x2+2x+3=0,解得:x1=﹣1,x2=3,则A(﹣1,0),B(3,0),令,得到y=﹣x2+2x+3=3,则C点坐标为(0,3);故答案为:A(﹣1,0),B(3,0),(0,3);(2)设点P的纵坐标为,∵点P为抛物线上位于x轴上方,∴,∵△PAB的面积为4,∴,解得:,∵点P为抛物线上的点,将代入y=﹣x2+2x+3得:﹣x2+2x+3=2,整理得x2﹣2x﹣1=0,解得:x1=1﹣,x2=1+,∴P点坐标为:(1﹣,2),(1+,2).【点睛】本题考查了二次函数的解析式的运用,利用二次函数的性质求解是关键.20、(1)(1,﹣1),(1,0),(1,﹣3),(2,﹣1),(2,0),(2,﹣3);(2)【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得点(x,y)在一次函数y=-2x+1图象上的情况,然后直接利用概率公式求解即可求得答案.【详解】解:(1)画树状图得:则点可能出现的所有坐标:(1,﹣1),(1,0),(1,﹣3),(2,﹣1),(2,0),(2,﹣3);(2)∵在所有的6种等可能结果中,落在y=﹣2x+1图象上的有(1,﹣1)、(2,﹣3)两种结果,∴点(x,y)在一次函数y=﹣2x+1图象上的概率是【点睛】本题考查了列表法和树状图法求概率,一次函数图象上点的坐标特征,正确的画出树状图是解题的关键.21、10cm【分析】取EF的中点M,作MN⊥AD交BC于点N,则MN经过球心O,连接OF,设OF=x,则OM=16−x,MF=8,然后在中利用勾股定理求得OF的长即可.【详解】解:如图,取EF的中点M,作MN⊥AD交BC于点N,则MN经过球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=16,设OF=x,则OM=16-x,MF=8,∴在中,,即,解得:x=10,答:球的半径为10cm.【点睛】本题主要考查了垂径定理,矩形的判定与性质及勾股定理的知识,解题的关键是正确作出辅助线构造直角三角形.22、(1)列表见解析,P所有可能的坐标有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4);(2)【分析】(1)用列表法列举出所有可能出现的情况,注意每一种情况出现的可能性是均等的,(2)点P在以原点为圆心,5为半径的圆上的结果有2个,即(3,4),(4,3),由概率公式即可得出答案.【详解】(1)由列表法列举所有可能出现的情况:因此点P所有可能的坐标有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16种.(2)点P在以原点为圆心,5为半径的圆上的结果有2个,即(3,4),(4,3),∴点P在以原点为圆心,5为半径的圆上的概率为.【点睛】本题考查了列表法或树状图法求等可能事件发生的概率,利用这种方法注意每一种情况出现的可能性是均等的.23、(1)能,1或3;(2)20m【分析】(1)当h=15米时,15=20t-5t2,解方程即可解答;(2)求出当的最大值即可.【详解】解;(1)解方程:,解得:,需要飞行1s或3s;(2),当时,h取最大值20,∴球飞行的最大高度是.【点睛】本题主要考查了二次函数与一元二次方程的关系,根据题意建立方程是解决问题的关键.24、1【分析】连接
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 制造业设计单位的合作措施
- 智慧校园建设中的技术挑战心得体会
- 2025年车库坡道用漆项目发展计划
- 旅游开发项目初始阶段流程
- 2025高一上学期班主任班级文化建设计划
- 新湘教版五年级下册英语教学计划
- 人教版八年级物理上册在线学习计划
- 高校实验室安全管理机构与职责
- 水务公司年度水质检测与维护计划
- 教育技术应用推广工作计划
- 完整的六年级奥语试题及答案
- GB/T 14404-2011剪板机精度
- GA 1517-2018金银珠宝营业场所安全防范要求
- 自费药品同意书
- 路基土石方路基开挖开工申请报告
- PLC控制轮式机器人操作手毕业论文
- 普通教育学第八章德育课件
- 政治经济学1政治经济学-导论课件
- 痉挛康复及肉毒素的应用培训课件
- 江垭中学学生会章程
- 清明节主题班会PPT模板
评论
0/150
提交评论