




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题13圆与正多边形一.选择题1.(2022·湖北鄂州)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为(
)A.10cm B.15cm C.20cm D.24cm【答案】C【分析】连接OA,OE,设OE与AB交于点P,根据,,得四边形ABDC是矩形,根据CD与切于点E,OE为的半径得,,即,,根据边之间的关系得,,在,由勾股定理得,,进行计算可得,即可得这种铁球的直径.【详解】解:如图所示,连接OA,OE,设OE与AB交于点P,∵,,,∴四边形ABDC是矩形,∵CD与切于点E,OE为的半径,∴,,∴,,∵AB=CD=16cm,∴,∵,在,由勾股定理得,解得,,则这种铁球的直径=,故选C.【点睛】本题考查了切线的性质,垂径定理,勾股定理,解题的关键是掌握这些知识点.2.(2022·湖南娄底)如图,等边内切的图形来自我国古代的太极图,等边三角形内切圆中的黑色部分和白色部分关于等边的内心成中心对称,则圆中的黑色部分的面积与的面积之比是(
)A. B. C. D.【答案】A【分析】由题意,得圆中黑色部分的面积是圆面积的一半,令BC=2a,则BD=a,根据勾股定理,得出AD=,同时在Rt△BOD中,OD=,进而求出黑色部分的面积以及等边三角形的面积,最后求出答案.【详解】解:令内切圆与BC交于点D,内切圆的圆心为O,连接AD,OB,由题可知,圆中黑色部分的面积是圆面积的一半,令BC=2a,则BD=a,在等边三角形ABC中AD⊥BC,OB平分∠ABC,∴∠OBD=∠ABC=30°,由勾股定理,得AD=,在Rt△BOD中,OD=tan30°×BD=,∴圆中的黑色部分的面积与的面积之比为.故选:A.【点睛】本题考查了等边三角形的性质,内切圆的性质和面积,等边三角形的面积以及勾股定理求边长,正确地计算能力是解决问题的关键.3.(2022·山东聊城)如图,AB,CD是的弦,延长AB,CD相交于点P.已知,,则的度数是(
)A.30° B.25° C.20° D.10°【答案】C【分析】如图,连接OB,OD,AC,先求解,再求解,从而可得,再利用周角的含义可得,从而可得答案.【详解】解:如图,连接OB,OD,AC,∵,∴,∵,∴,∵,,∴,,∴,∴,∴.∴的度数20°.故选:C.【点睛】本题考查的是圆心角与弧的度数的关系,等腰三角形的性质,三角形的内角和定理的应用,掌握“圆心角与弧的度数的关系”是解本题的关键.4.(2022·湖北黄冈)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,以点C为圆心,CA的长为半径画弧,交AB于点D,则弧AD的长为(
)A. B. C. D.2【答案】B【分析】连接CD,根据∠ACB=90°,∠B=30°可以得到∠A的度数,再根据AC=CD以及∠A的度数即可得到∠ACD的度数,最后根据弧长公式求解即可.【详解】解:连接CD,如图所示:∵ACB=90°,∠B=30°,AB=8,∴∠A=90°-30°=60°,AC=AB=4,由题意得:AC=CD,∴△ACD为等边三角形,∴∠ACD=60°,∴的长为:=,故选:B.【点睛】本题考查弧长公式,解题的关键是:求出弧所对应的圆心角的度数以及弧所在扇形的半径.5.(2022·四川达州)如图所示的曲边三角形可按下述方法作出:作等边,分别以点A,B,C为圆心,以长为半径作,,,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为,则此曲边三角形的面积为(
)A. B. C. D.【答案】A【分析】根据此三角形是由三段弧组成,所以根据弧长公式可得半径,即正三角形的边长,根据曲边三角形的面积等于三角形的面积与三个弓形的面积和,边长为的等边三角形的面积为,即可求解.【详解】解:设等边三角形ABC的边长为r,解得,即正三角形的边长为2,此曲边三角形的面积为故选A【点睛】本题考查了扇形面积的计算.此题的关键是明确曲边三角形的面积等于三角形的面积与三个弓形的面积和,然后再根据所给的曲线三角形的周长求出三角形的边长.6.(2022·江苏无锡)在Rt△ABC中,∠C=90°,AC=3,BC=4,以AC所在直线为轴,把△ABC旋转1周,得到圆锥,则该圆锥的侧面积为(
)A.12π B.15π C.20π D.24π【答案】C【分析】先利用勾股定理计算出AB,再利用扇形的面积公式即可计算出圆锥的侧面积.【详解】解:∵∠C=90°,AC=3,BC=4,∴AB==5,以直线AC为轴,把△ABC旋转一周得到的圆锥的侧面积=×2π×4×5=20π.故选:C.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.(2022·湖北荆州)如图,以边长为2的等边△ABC顶点A为圆心、一定的长为半径画弧,恰好与BC边相切,分别交AB,AC于D,E,则图中阴影部分的面积是(
)A. B. C. D.【答案】D【分析】作AF⊥BC,再根据勾股定理求出AF,然后根据阴影部分的面积=得出答案.【详解】过点A作AF⊥BC,交BC于点F.∵△ABC是等边三角形,BC=2,∴CF=BF=1.在Rt△ACF中,.∴.故选:D.【点睛】本题主要考查了求阴影部分的面积,涉及等边三角形的性质,勾股定理及扇形面积计算等知识,将阴影部分的面积转化为三角形的面积-扇形的面积是解题的关键.8.(2022·广西贺州)如图,在等腰直角中,点E在OA上,以点O为圆心、OE为半径作圆弧交OB于点F,连接EF,已知阴影部分面积为,则EF的长度为(
)A. B.2 C. D.【答案】C【分析】根据题意可得:OE=OF,∠O=90°,设OE=OF=x,利用阴影部分面积列出等式,得出,然后由勾股定理求解即可.【详解】解:根据题意可得:OE=OF,∠O=90°,设OE=OF=x,∴,解得:,∴,故选:C.【点睛】题目主要考查不规则图形的面积,一元二次方程的应用,勾股定理解三角形等,理解题意,综合运用这些知识点是解题关键.9.(2022·江苏无锡)如图,AB是圆O的直径,弦AD平分∠BAC,过点D的切线交AC于点E,∠EAD=25°,则下列结论错误的是(
)A.AE⊥DE B.AE//OD C.DE=OD D.∠BOD=50°【答案】C【分析】过点D作DF⊥AB于点F,根据切线的性质得到OD⊥DE,证明OD∥AE,根据平行线的性质以及角平分线的性质逐一判断即可.【详解】解:∵DE是⊙O的切线,∴OD⊥DE,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠EAD,∴∠EAD=∠ODA,∴OD∥AE,∴AE⊥DE.故选项A、B都正确;∵∠OAD=∠EAD=∠ODA=25°,∠EAD=25°,∴∠BOD=∠OAD+∠ODA=50°,故选项D正确;∵AD平分∠BAC,AE⊥DE,DF⊥AB,∴DE=DF<OD,故选项C不正确;故选:C.【点睛】本题考查的是切线的性质,角平分线的性质定理,平行线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.10.(2022·黑龙江大庆)已知圆锥的底面半径为5,高为12,则它的侧面展开图的面积是(
)A. B. C. D.【答案】B【分析】根据圆锥侧面展开图的面积,计算求解即可.【详解】解:由题意知,圆锥侧面展开图的半径即圆锥的母线长为,∴圆锥侧面展开图的面积为,故选B.【点睛】本题考查了圆锥侧面展开图的面积,勾股定理.解题的关键在于明确圆锥侧面展开图的面积,其中为圆锥底面半径,为圆锥侧面展开图的半径即圆锥的母线长.11.(2022·内蒙古包头)如图,是的两条直径,E是劣弧的中点,连接,.若,则的度数为(
)A. B. C. D.【答案】C【分析】连接OE,由题意易得,则有,然后可得,进而根据圆周角定理可求解.【详解】解:连接OE,如图所示:∵OB=OC,,∴,∴,∵E是劣弧的中点,∴,∴;故选C.【点睛】本题主要考查圆周角定理及垂径定理,熟练掌握圆周角定理及垂径定理是解题的关键.12.(2022·辽宁锦州)如图,线段是半圆O的直径。分别以点A和点O为圆心,大于的长为半径作弧,两弧交于M,N两点,作直线,交半圆O于点C,交于点E,连接,,若,则的长是(
)A. B.4 C.6 D.【答案】A【分析】根据作图知CE垂直平分AC,即可得,,根据圆的半径得,,根据圆周角的推论得,根据勾股定理即可得.【详解】解:根据作图知CE垂直平分AC,∴,,∴,∴,即,∵线段AB是半圆O的直径,∴,在中,根据勾股定理得,,故选A.【点睛】本题考查了圆,勾股定理,圆周角推论,解题的关键是掌握这些知识点.13.(2022·广西贵港)如图,⊙是的外接圆,是⊙的直径,点P在⊙上,若,则的度数是(
)A. B. C. D.【答案】C【分析】根据圆周角定理得到,,然后利用互余计算出∠A的度数,从而得到的度数.【详解】解:∵AB是⊙O的直径,∴,∴∴,故选:C.【点睛】本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.14.(2022·湖北武汉)一个扇形的弧长是,其圆心角是150°,此扇形的面积为(
)A. B. C. D.【答案】B【分析】先求出该扇形的半径,再求其面积即可;【详解】解:该扇形的半径为:,∴扇形的面积为:,故选:B.【点睛】本题主要考查扇形面积的求解,掌握扇形面积的求解公式是解题的关键.15.(2022·山东青岛)如图,正六边形内接于,点M在上,则的度数为(
)A. B. C. D.【答案】D【分析】先求出正六边形的中心角,再利用圆周角定理求解即可.【详解】解:连接OC、OD、OE,如图所示:∵正六边形内接于,∴∠COD==60°,则∠COE=120°,∴∠CME=∠COE=60°,故选:D.【点睛】本题考查正多边形的中心角、圆周角定理,熟练掌握正n多边形的中心角为是解答的关键.16.(2022·辽宁营口)如图,点A,B,C,D在上,,则的长为(
)A. B.8 C. D.4【答案】A【分析】连接,根据可得为的直径,又根据得到,故在直角三角形中,利用特殊角的三角函数即可求出.【详解】解:连接,,,为的直径,,,在中,,..故选:A.【点睛】本题主要考查圆周角定理,解三角形,解题的关键是掌握公式、定理。17.(2022·四川广安)蒙古包可以近似地看作由圆锥和圆柱组成.下图是一个蒙古包的示意图,底面圆半径DE=2m,圆锥的高AC=1.5m,圆柱的高CD=2.5m,则下列说法错误的是()A.圆柱的底面积为4πm2 B.圆柱的侧面积为10πm2C.圆锥的母线AB长为2.25m D.圆锥的侧面积为5πm2【答案】C【分析】由圆锥的侧面积、圆柱侧面积、圆的面积公式、分别求出答案,再进行判断,即可得到答案.【详解】解:根据题意,∵底面圆半径DE=2m,∴圆柱的底面积为:;故A正确;圆柱的侧面积为:;故B正确;圆锥的母线为:;故C错误;圆锥的侧面积为:;故D正确;故选:C【点睛】本题考查了圆锥的侧面积、圆柱侧面积、圆的面积公式等知识,解题的关键是掌握所学的知识,正确的进行判断.18.(2022·四川内江)如图,正六边形ABCDEF内接于⊙O,半径为6,则这个正六边形的边心距OM和的长分别为()A.4, B.3,π C.2, D.3,2π【答案】D【分析】连接、,证出是等边三角形,根据勾股定理求出,再由弧长公式求出弧的长即可.【详解】解:连接、,六边形为正六边形,,,为等边三角形,,,,的长为.故选:D.【点睛】本题考查的是正六边形的性质、等边三角形的判定与性质、勾股定理,熟练掌握正六边形的性质,由勾股定理求出是解决问题的关键.19.(2022·贵州铜仁)如图,是的两条半径,点C在上,若,则的度数为(
)A. B. C. D.【答案】B【分析】根据圆周角定理即可求解.【详解】∵是的两条半径,点C在上,∴∠C==40°故选:B【点睛】本题考查的是圆周角定理,熟知在同圆或者在等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答本题关键.20.(2022·贵州遵义)如图,在正方形中,和交于点,过点的直线交于点(不与,重合),交于点.以点为圆心,为半径的圆交直线于点,.若,则图中阴影部分的面积为(
)A. B. C. D.【答案】B【分析】根据题意可得四边形的面积等于正方形面积的一半,根据阴影部分面积等于半圆减去四边形的面积和弓形的面积即可求解.【详解】解:在正方形中,,的半径为:过点,根据中心对称可得四边形的面积等于正方形面积的一半,又阴影部分面积为:故选:B.【点睛】本题考查了正方形的性质,求扇形面积,掌握以上知识是解题的关键.21.(2022·吉林)如图,在中,,,.以点为圆心,为半径作圆,当点在内且点在外时,的值可能是(
)A.2 B.3 C.4 D.5【答案】C【分析】先利用勾股定理可得,再根据“点在内且点在外”可得,由此即可得出答案.【详解】解:在中,,,,,点在内且点在外,,即,观察四个选项可知,只有选项C符合,故选:C.【点睛】本题考查了勾股定理、点与圆的位置关系,熟练掌握点与圆的位置关系是解题关键.22.(2022·湖北十堰)如图,是等边的外接圆,点是弧上一动点(不与,重合),下列结论:①;②;③当最长时,;④,其中一定正确的结论有(
)A.1个 B.2个 C.3个 D.4个【答案】C【分析】根据等边三角形的性质可得,从而得到∠ADB=∠BDC,故①正确;根据点是上一动点,可得不一定等于,故②错误;当最长时,DB为圆O的直径,可得∠BCD=90°,再由是等边的外接圆,可得∠ABD=∠CBD=30°,可得,故③正确;延长DA至点E,使AE=AD,证明△ABE≌△CBD,可得BD=AE,∠ABE=∠DBC,从而得到△BDE是等边三角形,可得到DE=BD,故④正确;即可求解.【详解】解:∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴,∴∠ADB=∠BDC,故①正确;∵点是上一动点,∴不一定等于,∴DA=DC不一定成立,故②错误;当最长时,DB为圆O的直径,∴∠BCD=90°,∵是等边的外接圆,∠ABC=60°,∴BD⊥AC,∴∠ABD=∠CBD=30°,∴,故③正确;如图,延长DA至点E,使AE=DC,∵四边形ABCD为圆O的内接四边形,∴∠BCD+∠BAD=180°,∵∠BAE+∠BAD=180°,∴∠BAE=∠BCD,∵AB=BC,AE=CD,∴△ABE≌△CBD,∴BD=AE,∠ABE=∠DBC,∴∠ABE+∠ABD=∠DBC+∠ABD=∠ABC=60°,∴△BDE是等边三角形,∴DE=BD,∵DE=AD+AE=AD+CD,∴,故④正确;∴正确的有3个.故选:C.【点睛】本题主要考查了圆周角定理,三角形的外接圆,圆内接四边形的性质,垂径定理,等边三角形的判定和性质等知识,熟练掌握圆周角定理,三角形的外接圆,圆内接四边形的性质,垂径定理,等边三角形的判定和性质等知识是解题的关键.23.(2022·河北)某款“不倒翁”(图1)的主视图是图2,PA,PB分别与所在圆相切于点A,B.若该圆半径是9cm,∠P=40°,则的长是(
)A.cm B.cm C.cm D.cm【答案】A【分析】如图,根据切线的性质可得,根据四边形内角和可得的角度,进而可得所对的圆心角,根据弧长公式进行计算即可求解.【详解】解:如图,PA,PB分别与所在圆相切于点A,B.,∠P=40°,,该圆半径是9cm,cm,故选:A.【点睛】本题考查了切线的性质,求弧长,牢记弧长公式是解题的关键.24.(2022·山西)如图,内接于,AD是的直径,若,则的度数是(
)A.60° B.65° C.70° D.75°【答案】C【分析】首先连接CD,由AD是的直径,根据直径所对的圆周角是直角,可求得,又由圆周角定理,可得,再用三角形内角和定理求得答案.【详解】解:连接CD,∵AD是的直径,∴.∵,∴.故选:C.【点睛】本题考查了圆周角定理、三角形的内角和定理.熟练掌握圆周角定理是解此题的关键.25.(2022·广西梧州)如图,是的外接圆,且,在弧AB上取点D(不与点A,B重合),连接,则的度数是(
)A.60° B.62° C.72° D.73°【答案】C【分析】连接CD,根据等腰三角形的性质可求∠ACB的度数,然后根据圆周定理求出∠BAD=∠BCD,∠ABD=∠ACD,从而可求出的度数.【详解】解:连接CD,则∠BAD=∠BCD,∠ABD=∠ACD,∵AB=AC,∴∠ABC=∠ACB,又∠BAC=36°,∴∠ACB=,∴∠BAD+∠ABD=∠BCD+∠ACD=∠ACB=72°.故选:C.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,根据圆周角定理得出∠BAD=∠BCD,∠ABD=∠ACD是解题的关键.26.(2022·山东泰安)如图,四边形中.,,交于点E,以点E为圆心,为半径,且的圆交于点F,则阴影部分的面积为(
)A. B. C. D.【答案】B【分析】过点E作EG⊥CD于点G,根据平行线的性质和已知条件,求出,根据ED=EF,得出,即可得出,解直角三角形,得出GE、DG,最后用扇形的面积减三角形的面积得出阴影部分的面积即可.【详解】解:过点E作EG⊥CD于点G,如图所示:∵DE⊥AD,∴∠ADE=90°,∵∠A=60°,∴∠AED=90°-∠A=30°,∵,∴,∵ED=EF,∴,∴,∵,∴,∵DE=6,,
∴,,∴,∴,故选:B.【点睛】本题主要考查了平行线的性质,垂径定理,等腰三角形的判定和性质,扇形面积计算公式,解直角三角形,作出辅助线,求出∠DEF=120°,DF的长,是解题的关键.27.(2022·山东潍坊)(多选题)如图,的内切圆(圆心为点O)与各边分别相切于点D,E,F,连接.以点B为圆心,以适当长为半径作弧分别交于G,H两点;分别以点G,H为圆心,以大于的长为半径作弧,两条弧交于点P;作射线.下列说法正确的是(
)A.射线一定过点O B.点O是三条中线的交点C.若是等边三角形,则 D.点O不是三条边的垂直平分线的交点【答案】AC【分析】根据三角形内切圆的性质逐个判断可得出答案.【详解】A、以点B为圆心,以适当长为半径作弧分别交于G,H两点;分别以点G,H为圆心,以大于的长为半径作弧,两条弧交于点P;作射线,由此可得BP是角平分线,所以射线一定过点O,说法正确,选项符合题意;B、边DE、EF、DF分别是圆的弦长,所以点O是△DEF三条边的垂直平分线的交点,选项不符合题意;C、当是等边三角形时,可以证得D、F、E分别是边的中点,根据中位线概念可得,选项符合题意;D、边DE、EF、DF分别是圆的弦长,所以点O是△DEF三条边的垂直平分线的交点,选项不符合题意;故选:AC.【点睛】本题考查了三角形内切圆的特点和性质,解题的关键是能与其它知识联系起来,加以证明选项的正确.28.(2022·浙江嘉兴·中考真题)如图,在⊙O中,∠BOC=130°,点A在上,则∠BAC的度数为()A.55° B.65° C.75° D.130°【答案】B【分析】利用圆周角直接可得答案.【详解】解:∠BOC=130°,点A在上,故选B【点睛】本题考查的是圆周角定理的应用,掌握“同圆或等圆中,同弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.29.(2022·山东滨州·中考真题)如图,在中,弦相交于点P,若,则的大小为(
)A. B. C. D.【答案】A【分析】根据三角形的外角的性质可得,求得,再根据同弧所对的圆周角相等,即可得到答案.【详解】,,故选:A.【点睛】本题考查了圆周角定理及三角形的外角的性质,熟练掌握知识点是解题的关键.30.(2022·江苏连云港·中考真题)如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为(
)A. B. C. D.【答案】B【分析】阴影部分的面积等于扇形面积减去三角形面积,分别求出扇形面积和等边三角形的面积即可.【详解】解:如图,过点OC作OD⊥AB于点D,∵∠AOB=2×=60°,∴△OAB是等边三角形,∴∠AOD=∠BOD=30°,OA=OB=AB=2,AD=BD=AB=1,∴OD=,∴阴影部分的面积为,故选:B.【点睛】本题考查了扇形面积、等边三角形的面积计算方法,掌握扇形面积、等边三角形的面积的计算方法是正确解答的关键.31.(2022·湖北武汉·中考真题)如图,在四边形材料中,,,,,.现用此材料截出一个面积最大的圆形模板,则此圆的半径是(
)A. B. C. D.【答案】B【分析】如图所示,延长BA交CD延长线于E,当这个圆为△BCE的内切圆时,此圆的面积最大,据此求解即可.【详解】解:如图所示,延长BA交CD延长线于E,当这个圆为△BCE的内切圆时,此圆的面积最大,∵,∠BAD=90°,∴△EAD∽△EBC,∠B=90°,∴,即,∴,∴EB=32cm,∴,设这个圆的圆心为O,与EB,BC,EC分别相切于F,G,H,∴OF=OG=OH,∵,∴,∴,∴,∴此圆的半径为8cm,故选B.【点睛】本题主要考查了三角形内切圆半径与三角形三边的关系,勾股定理,正确作出辅助线是解题的关键.32.(2022·湖北宜昌·中考真题)如图,四边形内接于,连接,,,若,则(
)A. B. C. D.【答案】B【分析】根据圆内接四边形的性质求出,根据圆周角定理可得,再根据计算即可.【详解】∵四边形内接于,∴,由圆周角定理得,,∵∴故选:B.【点睛】此题考查圆周角定理和圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.33.(2022·四川德阳·中考真题)如图,点是的内心,的延长线和的外接圆相交于点,与相交于点,则下列结论:①;②若,则;③若点为的中点,则;④.其中一定正确的个数是(
)A.1 B.2 C.3 D.4【答案】D【分析】根据点是的内心,可得,故①正确;连接BE,CE,可得∠ABC+∠ACB=2(∠CBE+∠BCE),从而得到∠CBE+∠BCE=60°,进而得到∠BEC=120°,故②正确;,得出,再由点为的中点,则成立,故③正确;根据点是的内心和三角形的外角的性质,可得,再由圆周角定理可得,从而得到∠DBE=∠BED,故④正确;即可求解.【详解】解:∵点是的内心,∴,故①正确;如图,连接BE,CE,∵点是的内心,∴∠ABC=2∠CBE,∠ACB=2∠BCE,∴∠ABC+∠ACB=2(∠CBE+∠BCE),∵∠BAC=60°,∴∠ABC+∠ACB=120°,∴∠CBE+∠BCE=60°,∴∠BEC=120°,故②正确;∵点是的内心,∴,∴,∵点为的中点,∴线段AD经过圆心O,∴成立,故③正确;∵点是的内心,∴,∵∠BED=∠BAD+∠ABE,∴,∵∠CBD=∠CAD,∴∠DBE=∠CBE+∠CBD=∠CBE+∠CAD,∴,∴∠DBE=∠BED,∴,故④正确;∴正确的有4个.故选:D【点睛】本题主要考查了三角形的内心问题,圆周角定理,三角形的内角和等知识,熟练掌握三角形的内心问题,圆周角定理,三角形的内角和等知识是解题的关键.34.(2022·湖南株洲·中考真题)如图所示,等边的顶点在⊙上,边、与⊙分别交于点、,点是劣弧上一点,且与、不重合,连接、,则的度数为(
)A. B. C. D.【答案】C【分析】根据等边三角形的性质可得,再根据圆内接四边形的对角互补即可求得答案.【详解】解:是等边三角形,,,故选C.【点睛】本题考查了等边三角形的性质及圆内接四边形的性质,熟练掌握圆内接四边形的对角互补是解题的关键.35.(2022·甘肃武威·中考真题)大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形,若对角线的长约为8mm,则正六边形的边长为(
)A.2mm B. C. D.4mm【答案】D【分析】如图,连接CF与AD交于点O,易证△COD为等边三角形,从而CD=OC=OD=AD,即可得到答案.【详解】连接CF与AD交于点O,∵为正六边形,∴∠COD==60°,CO=DO,AO=DO=AD=4mm,∴△COD为等边三角形,∴CD=CO=DO=4mm,即正六边形的边长为4mm,故选:D.【点睛】本题考查了正多边形与圆的性质,正确把握正六边形的中心角、半径与边长的关系是解题的关键.36.(2022·湖南邵阳·中考真题)如图,⊙O是等边△ABC的外接圆,若AB=3,则⊙O的半径是(
)A. B. C. D.【答案】C【分析】作直径AD,连接CD,如图,利用等边三角形的性质得到∠B=60°,关键圆周角定理得到∠ACD=90°,∠D=∠B=60°,然后利用含30度的直角三角形三边的关系求解.【详解】解:作直径AD,连接CD,如图,∵△ABC为等边三角形,∴∠B=60°,∵AD为直径,∴∠ACD=90°,∵∠D=∠B=60°,则∠DAC=30°,∴CD=AD,∵AD2=CD2+AC2,即AD2=(AD)2+32,∴AD=2,∴OA=OB=AD=.故选:C.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了等边三角形的性质、圆周角定理和含30度的直角三角形三边的关系.37.(2022·四川眉山·中考真题)如图是不倒翁的主视图,不倒翁的圆形脸恰好与帽子边沿,分别相切于点,,不倒翁的鼻尖正好是圆心,若,则的度数为(
)A. B. C. D.【答案】C【分析】连OB,由AO=OB得,∠OAB=∠OBA=28°,∠AOB=180°-2∠OAB=124°;因为PA、PB分别相切于点A、B,则∠OAP=∠OBP=90°,利用四边形内角和即可求出∠APB.【详解】连接OB,∵OA=OB,∴∠OAB=∠OBA=28°,∴∠AOB=124°,∵PA、PB切⊙O于A、B,∴OA⊥PA,OP⊥AB,∴∠OAP+∠OBP=180°,∴∠APB+∠AOB=180°;∴∠APB=56°.故选:C【点睛】本题考查切线的性质,三角形和四边形的内角和定理,切线长定理,等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造等腰三角形解决问题.38.(2022·浙江湖州·中考真题)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD中,M,N分别是AB,BC上的格点,BM=4,BN=2.若点P是这个网格图形中的格点,连接PM,PN,则所有满足∠MPN=45°的△PMN中,边PM的长的最大值是(
)A. B.6 C. D.【答案】C【分析】根据同弧所对的圆周角等于所对圆心角的一半,过点M、N作以点O为圆心,∠MON=90°的圆,则点P在所作的圆上,观察圆O所经过的格点,找出到点M距离最大的点即可求出.【详解】作线段MN中点Q,作MN的垂直平分线OQ,并使OQ=MN,以O为圆心,OM为半径作圆,如图,因为OQ为MN垂直平分线且OQ=MN,所以OQ=MQ=NQ,∴∠OMQ=∠ONQ=45°,∴∠MON=90°,所以弦MN所对的圆O的圆周角为45°,所以点P在圆O上,PM为圆O的弦,通过图像可知,当点P在位置时,恰好过格点且经过圆心O,所以此时最大,等于圆O的直径,∵BM=4,BN=2,∴,∴MQ=OQ=,∴OM=,∴,故选C.【点睛】此题考查了圆的相关知识,熟练掌握同弧所对的圆周角相等、直径是圆上最大的弦,会灵活用已知圆心角和弦作圆是解题的关键.39.(2022·四川遂宁·中考真题)如图,圆锥底面圆半径为7cm,高为24cm,则它侧面展开图的面积是(
)A.cm2 B.cm2 C.cm2 D.cm2【答案】C【分析】先利用勾股定理计算出AC=25cm,由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则可根据扇形的面积公式计算出圆锥的侧面积.【详解】解:在中,cm,∴它侧面展开图的面积是cm2.故选:C【点睛】本题考查了圆锥的计算,理解圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长是解题的关键.40.(2022·陕西·中考真题)如图,内接于⊙,连接,则(
)A. B. C. D.【答案】A【分析】连接OB,由2∠C=∠AOB,求出∠AOB,再根据OA=OB即可求出∠OAB.【详解】连接OB,如图,∵∠C=46°,∴∠AOB=2∠C=92°,∴∠OAB+∠OBA=180°-92°=88°,∵OA=OB,∴∠OAB=∠OBA,∴∠OAB=∠OBA=×88°=44°,故选:A.【点睛】本题主要考查了圆周角定理,根据圆周角定理的出∠AOB=2∠C=92°是解答本题的关键.41.(2022·浙江宁波·中考真题)已知圆锥的底面半径为,母线长为,则圆锥的侧面积为(
)A. B. C. D.【答案】B【分析】利用圆锥侧面积计算公式计算即可:;【详解】,故选B.【点睛】本题考查了圆锥侧面积的计算公式,比较简单,直接代入公式计算即可.42.(2022·甘肃武威·中考真题)如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧(),点是这段弧所在圆的圆心,半径,圆心角,则这段弯路()的长度为(
)A. B. C. D.【答案】C【分析】根据题目中的数据和弧长公式,可以计算出这段弯路()的长度.【详解】解:∵半径OA=90m,圆心角∠AOB=80°,这段弯路()的长度为:,故选C【点睛】本题考查了弧长的计算,解答本题的关键是明确弧长计算公式43.(2022·浙江温州·中考真题)如图,是的两条弦,于点D,于点E,连结,.若,则的度数为(
)A. B. C. D.【答案】B【分析】根据四边形的内角和等于360°计算可得∠BAC=50°,再根据圆周角定理得到∠BOC=2∠BAC,进而可以得到答案.【详解】解:∵OD⊥AB,OE⊥AC,∴∠ADO=90°,∠AEO=90°,∵∠DOE=130°,∴∠BAC=360°-90°-90°-130°=50°,∴∠BOC=2∠BAC=100°,故选:B.【点睛】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.44.(2022·山东泰安·中考真题)如图,点I为的内心,连接并延长交的外接圆于点D,点E为弦的中点,连接,,,当,,时,的长为(
)A.5 B.4.5 C.4 D.3.5【答案】C【分析】延长ID到M,使DM=ID,连接CM.想办法求出CM,证明IE是△ACM的中位线即可解决问题.【详解】解:延长ID到M,使DM=ID,连接CM.∵I是△ABC的内心,∴∠IAC=∠IAB,∠ICA=∠ICB,∵∠DIC=∠IAC+∠ICA,∠DCI=∠BCD+∠ICB,∴∠DIC=∠DCI,∴DI=DC=DM,∴∠ICM=90°,∴CM==8,∵AI=2CD=10,∴AI=IM,∵AE=EC,∴IE是△ACM的中位线,∴IE=CM=4,故选:C.【点睛】本题考查三角形的内心、三角形的外接圆、三角形的中位线定理、直角三角形的判定、勾股定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题.45.(2022·浙江丽水·中考真题)某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为,高为,则改建后门洞的圆弧长是(
)A. B. C. D.【答案】C【分析】利用勾股定理先求得圆弧形的门洞的直径BC,再利用矩形的性质证得是等边三角形,得到,进而求得门洞的圆弧所对的圆心角为,利用弧长公式即可求解.【详解】如图,连接,,交于点,∵,∴是直径,∴,∵四边形是矩形,∴,∵,∴,∴是等边三角形,∴,∴门洞的圆弧所对的圆心角为,∴改建后门洞的圆弧长是(m),故选:C【点睛】本题考查了弧长公式,矩形的性质以及勾股定理的应用,从实际问题转化为数学模型是解题的关键.46.(2022·四川成都·中考真题)如图,正六边形内接于⊙,若⊙的周长等于,则正六边形的边长为(
)A. B. C.3 D.【答案】C【分析】连接OB,OC,由⊙O的周长等于6π,可得⊙O的半径,又由圆的内接多边形的性质,即可求得答案.【详解】解:连接OB,OC,∵⊙O的周长等于6π,∴⊙O的半径为:3,∵∠BOC360°=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OB=3,∴它的内接正六边形ABCDEF的边长为3,故选:C.【点睛】此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.二.填空题47.(2022·山东泰安)如图,在中,,⊙过点A、C,与交于点D,与相切于点C,若,则__________【答案】##64度【分析】根据同弧对应的圆心角是圆周角的2倍计算出,再根据,内错角得到答案.【详解】如下图所示,连接OC从图中可以看出,是圆弧对应的圆周角,是圆弧对应的圆心角得.∵BC是圆O的切线∴∵∴∴∴故答案为:.【点睛】本题考查圆的切线的性质,圆周角定理、平行线的判定和性质,解题的关键是熟练掌握圆和平行线的相关知识.48.(2022·江苏苏州)如图,AB是的直径,弦CD交AB于点E,连接AC,AD.若,则______°【答案】62【分析】连接,根据直径所对的圆周角是90°,可得,由,可得,进而可得.【详解】解:连接,∵AB是的直径,∴,,,故答案为:62【点睛】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,掌握圆周角定理是解题的关键.49.(2022·湖北宜昌)如图,点,,都在方格纸的格点上,绕点顺时针方向旋转后得到,则点运动的路径的长为______.【答案】【分析】先求出AB的长,再根据弧长公式计算即可.【详解】由题意得,AC=4,BC=3,∴,∵绕点顺时针方向旋转后得到,∴,∴的长为:,故答案为:.【点睛】本题考查了旋转的性质,勾股定理和弧长公式,熟记弧长公式是解题的关键.50.(2022·四川凉山)如图,⊙O的直径AB经过弦CD的中点H,若cos∠CDB=,BD=5,则⊙O的半径为_______.【答案】【分析】先由垂径定理求得BC=BD=5,再由直径所对圆周角是直角∠ACB=90°,由余弦定义可推出sinA=,即可求得sinA=,然后由圆周角定理得∠A=∠D,,即可得,则半径可求.【详解】解:连接AC,如图,∵⊙O的直径AB经过弦CD的中点H,∴CH=DH,AB⊥CD,∴BC=BD=5,∵AB是⊙O的直径,∴∠ACB=90°,∴sinA=,∵∠A=∠D,∴cosA=cosD=,∴sinA=sinD=∴,∴AB=∴半径为【点睛】本题考查解直角三角形,圆周角定理,垂径定理的推论,求得∠ACB=90°、∠A=∠D是解题的关键.51.(2022·四川广元)如图,将⊙O沿弦AB折叠,恰经过圆心O,若AB=2,则阴影部分的面积为_____.【答案】##【分析】过点O作OD⊥AB于点D,交劣弧AB于点E,由题意易得,则有,然后根据特殊三角函数值及扇形面积公式可进行求解阴影部分的面积.【详解】解:过点O作OD⊥AB于点D,交劣弧AB于点E,如图所示:由题意可得:,∴,∴,∴弓形AB的面积为,∴阴影部分的面积为;故答案为.【点睛】本题主要考查扇形面积、轴对称的性质及三角函数,熟练掌握扇形面积、轴对称的性质及三角函数是解题的关键.52.(2022·广西玉林)如图,在网格中,各小正方形边长均为1,点O,A,B,C,D,E均在格点上,点O是的外心,在不添加其他字母的情况下,则除外把你认为外心也是O的三角形都写出来__________________________.【答案】△ADC、△BDC、△ABD【分析】先求出△ABC的外接圆半径r,再找到距离O点的长度同为r的点,即可求解.【详解】由网格图可知O点到A、B、C三点的距离均为:,则外接圆半径,图中D点到O点距离为:,图中E点到O点距离为:,则可知除△ABC外把你认为外心也是O的三角形有:△ADC、△ADB、△BDC,故答案为:△ADC、△ADB、△BDC.【点睛】本题考查了外接圆的性质、勾股定理等知识,求出△ABC的外接圆半径r是解答本题的关键.53.(2022·浙江嘉兴·中考真题)如图,在廓形中,点C,D在上,将沿弦折叠后恰好与,相切于点E,F.已知,,则的度数为_______;折痕的长为_______.【答案】
60°##60度
【分析】根据对称性作O关于CD的对称点M,则点D、E、F、B都在以M为圆心,半径为6的圆上,再结合切线的性质和垂径定理求解即可.【详解】作O关于CD的对称点M,则ON=MN连接MD、ME、MF、MO,MO交CD于N∵将沿弦折叠∴点D、E、F、B都在以M为圆心,半径为6的圆上∵将沿弦折叠后恰好与,相切于点E,F.∴ME⊥OA,MF⊥OB∴∵∴四边形MEOF中即的度数为60°;∵,∴(HL)∴∴∴∵MO⊥DC∴∴故答案为:60°;【点睛】本题考查了折叠的性质、切线的性质、垂径定理、勾股定理;熟练掌握折叠的性质作出辅助线是解题的关键.54.(2022·湖北恩施)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,⊙O为Rt△ABC的内切圆,则图中阴影部分的面积为(结果保留π)________.【答案】-【分析】利用切线长定理求得⊙O的半径,根据S阴影=S△ABC-(S扇形EOF+S扇形DOF)-S正方形CDOE列式计算即可求解.【详解】解:设切点分别为D、E、F,连接OD、OE、OF,∵⊙O为Rt△ABC的内切圆,∴AE=AF、BD=BF、CD=CE,OD⊥BC,OE⊥AC,∵∠C=90°,∴四边形CDOE为正方形,∴∠EOF+∠FOD=360°-90°=270°,设⊙O的半径为x,则CD=CE=x,AE=AF=4-x,BD=BF=3-x,∴4-x+3-x=5,解得x=1,∴S阴影=S△ABC-(S扇形EOF+S扇形DOF)-S正方形CDOE=×3×4-×1×1=-.故答案为:-.【点睛】本题考查了切线长定理,扇形的面积公式,熟记各图形的性质并准确识图是解题的关键.55.(2022·湖南岳阳)如图,在中,为直径,,为弦,过点的切线与的延长线交于点,为线段上一点(不与点重合),且.(1)若,则的长为______(结果保留);(2)若,则______.【答案】
【分析】(1)根据圆周角定理求出∠AOD=70°,再利用弧长公式求解;(2)解直角三角形求出BC,AD,BD,再利用相似三角形的性质求出DE,BE,可得结论.【详解】解:(1)∵,∴的长;故答案为:;(2)连接,∵是切线,是直径,∴,∴,∵是直径,∴,∴,∴,∴,∴,∵,,∴,∴,∴,∴,∴,∴,∴.故答案为:.【点睛】本题主要考查圆的相关知识,相似三角形的判定和性质,解直角三角形等知识,熟练掌握各性质及判定定理,正确寻找相似三角形解决问题是解题的关键.56.(2022·湖南永州)如图,是的直径,点、在上,,则______度.【答案】120【分析】利用同弧所对的圆周角等于圆心角的一半得出,则.【详解】解:∵,是弧AC所对的圆周角,是弧AC所对的圆心角,∴,∴,故答案为:120.【点睛】本题考查圆周角定理,熟练掌握“同弧所对的圆周角等于圆心角的一半”是解题的关键.57.(2022·湖北武汉)如图,点P是上一点,是一条弦,点C是上一点,与点D关于对称,交于点E,与交于点F,且.给出下面四个结论:①平分;
②;
③;
④为的切线.其中所有正确结论的序号是_________________.【答案】①②④【分析】根据点AB为CD的垂直平分线,得出BD=BC,AD=AC,根据等边对等角得出∠BDC=∠BCD,利用平行线性质可判断①正确;利用△ADB≌△ACB(SSS)得出∠EAB=∠CAB,利用圆周角弧与弦关系可判断②正确;根据等弧所对的圆周角相等可得∠AEF≠∠ABE,从而可得△AEF与△ABE不相似,即可判断③;连结OB,利用垂径定理得出OB⊥CE,利用平行线性质得出OB⊥BD,即可判断④正确.【详解】解:∵点C是上一点,与点D关于对称,∴AB为CD的垂直平分线,∴BD=BC,AD=AC,∴∠BDC=∠BCD,∵,∴∠ECD=∠CDB,∴∠ECD=∠BCD,∴CD平分∠BCE,故①正确;在△ADB和△ACB中,∵AD=AC,BD=BC,AB=AB,∴△ADB≌△ACB(SSS),∴∠EAB=∠CAB,∴,∴BE=BC=BD,故②正确;∵AC≠AE,∴≠,∴∠AEF≠∠ABE,∴△AEF与△ABE不相似,故③错误;连结OB,∵,CE为弦,∴OB⊥CE,∵,∴OB⊥BD,∴BD为的切线.故④正确,∴其中所有正确结论的序号是①②④.故答案为①②④..【点睛】本题考查轴对称性质,线段垂直平分线性质,角平分线判定,三角形全等判断于性质,垂径定理,切线判断,掌握轴对称性质,线段垂直平分线性质,角平分线判定,三角形全等判断于性质,垂径定理,切线判断是解题关键.58.(2022·江苏泰州)如图,PA与⊙O相切于点A,PO与⊙O相交于点B,点C在上,且与点A,B不重合,若∠P=26°,则∠C的度数为_________°.【答案】32【分析】连接OA,根据切线的性质和直角三角形的性质求出∠O=64°.再根据圆周角的定理,求解即可.【详解】解:连接OA,∵PA与⊙O相切于点A,∴∠PAO=90°,∴∠O=90°-∠P,∵∠P=26°,∴∠O=64°,∴∠C=∠O=32°.故答案为:32.【点睛】此题考查了切线的性质以及圆周角定理,解题的关键是正确利用切线的定理,作出辅助线,求出∠O的度数.59.(2022·湖南郴州)如图,圆锥的母线长,底面圆的直径,则该圆锥的侧面积等于________.(结果用含的式子表示)【答案】【分析】根据圆锥的侧面积=底面周长×母线长÷2,即可求出答案.【详解】解:根据题意,∵圆锥的母线长,底面圆的直径,∴圆锥的侧面积为:;故答案为:;【点睛】本题考查了求圆锥的侧面积,解题的关键是利用了圆的周长公式和扇形面积公式求解.60.(2022·辽宁锦州)如图,在中,,以为直径的交边于D,E两点,,则的长是____________.【答案】【分析】连接OE,OD,根据等腰三角形的性质,求得∠DOE=50°,半径为1,代入弧长公式计算即可.【详解】连接OE,OD,∵,OB=OD,OA=OE,∴∠B=∠ODB=65°,∠A=∠OEA=50°,∴∠BOD=50°,∠AOE=80°,∴∠DOE=50°,半径为1,的长是.故答案为:.【点睛】本题考查了等腰三角形的性质,弧长公式,熟练掌握弧长公式是解题的关键.61.(2022·辽宁)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC=130°,连接AC,则∠BAC的度数为___________.【答案】40°##40度【分析】首先利用圆内接四边形的性质和∠ADC的度数求得∠B的度数,然后利用直径所对的圆周角是直角确定∠ACB=90°,然后利用直角三角形的两个锐角互余求得答案即可.【详解】解:∵四边形ABCD内接与⊙O,∠ADC=130°,∴∠B=180°-∠ADC=180°-130°=50°,∵AB为直径,∴∠ACB=90°,∴∠CAB=90°-∠B=90°-50°=40°,故答案为:40°.【点睛】本题考查了圆内接四边形的性质及圆周角定理的知识,解题的关键是了解圆内接四边形的对角互补.62.(2022·辽宁营口)如图,在正六边形中,连接,则____________度.【答案】30【分析】连接BE,交CF与点O,连接OA,先求出,再根据等腰三角形等边对等角的性质,三角形外角的性质求解即可.【详解】连接BE,交CF与点O,连接OA,在正六边形中,,,故答案为:30.【点睛】本题考查了正多边形与圆,等腰三角形的性质,三角形外角的性质,熟练掌握知识点是解题的关键.63.(2022·四川广安)如图,四边形ABCD是边长为的正方形,曲线DA1B1C1D1A2…是由多段90°的圆心角所对的弧组成的.其中,弧DA1的圆心为A,半径为AD;弧A1B1的圆心为B,半径为BA1;弧B1C1的圆心为C,半径为CB1;弧C1D1的圆心为D,半径为DC1….弧DA1、弧A1B1、弧B1C1、弧C1D1…的圆心依次按点A、B、C、D循环,则弧C2022D2022的长是___________(结果保留π).【答案】2022π【分析】根据题意有后一段弧的半径总比前一段弧的半径长,又因为的半径为,可知任何一段弧的半径都是的倍数,根据圆心以A、B、C、D四次一个循环,可得弧的半径为:,再根据弧长公式即可作答.【详解】根据题意有:的半径,的半径,的半径,的半径,的半径,的半径,的半径,的半径,...以此类推可知,故弧的半径为:,即弧的半径为:,即弧的长度为:,故答案为:.【点睛】本题考查了弧长的计算公式,找到每段弧的半径变化规律是解答本题的关键.64.(2022·内蒙古呼和浩特)已知为⊙的直径且,点是⊙上一点(不与、重合),点在半径上,且,与过点的⊙的切线垂直,垂足为.若,则_____,_______.【答案】
1
【分析】根据题意作出图形,连接,根据切线的性质,等边对等角,平行线的性质可得,根据,可得,可得,进而证明,根据相似三角形的性质列出方程,解方程即可求解.【详解】如图,连接,是⊙的切线,,,,,,,,,,,
,,,设,则解得(舍去)即故答案为:.【点睛】本题考查了切线的性质,等腰三角形的性质与判定,相似三角形的性质与判定,综合运用以上知识结合图形求解是解题的关键.65.(2022·江苏常州)如图,是的内接三角形.若,,则的半径是______.【答案】1【分析】连接、,根据圆周角定理得到,根据勾股定理计算即可.【详解】解:连接、,,,,即,解得:,故答案为:1.【点睛】本题考查的是三角形的外接圆与外心,掌握圆周角定理、勾股定理是解题的关键.66.(2022·黑龙江哈尔滨)一个扇形的面积为,半径为,则此扇形的圆心角是___________度.【答案】70【分析】设扇形的圆心角是,根据扇形的面积公式即可得到一个关于n的方程,解方程即可求解.【详解】解:设扇形的圆心角是,根据扇形的面积公式得:
解得n=70.故答案是:.【点睛】此题主要考查扇形的面积公式,解题的关键是熟知扇形的面积公式的运用.67.(2022·吉林)如图,在半径为1的上顺次取点,,,,,连接,,,,,.若,,则与的长度之和为__________.(结果保留).【答案】##【分析】由圆周角定理得,根据弧长公式分别计算出与的长度,相减即可得到答案.【详解】解:∵,∴又的半径为1,的长度=又,∴的长度=∴与的长度之和=,故答案为:.【点睛】本题主要考查了计算弧长,圆周角定理,熟练掌握弧长计算公式是解答本题的关键.68.(2022·山东聊城)如图,线段,以AB为直径画半圆,圆心为,以为直径画半圆①;取的中点,以为直径画半圆②;取的中点,以为直径画半圆③…按照这样的规律画下去,大半圆内部依次画出的8个小半圆的弧长之和为______________.【答案】##【分析】由AB=2,可得半圆①弧长为,半圆②弧长为()2π,半圆③弧长为()3π,半圆⑧弧长为()8π,即可得8个小半圆的弧长之和为π+()2π+()3π+...+()8π=π.【详解】解:∵,∴,半圆①弧长为,同理,半圆②弧长为,,半圆③弧长为,……半圆⑧弧长为,∴8个小半圆的弧长之和为.故答案为:.【点睛】此题考查图形的变化类规律,解题的关键是掌握圆的周长公式和找到弧长的变化规律.69.(2022·内蒙古通辽)如图,是的外接圆,为直径,若,,点从点出发,在内运动且始终保持,当,两点距离最小时,动点的运动路径长为______.【答案】【分析】根据题中的条件可先确定点P的运动轨迹,然后根据三角形三边关系确定CP的长最小时点P的位置,进而求出点P的运动路径长.【详解】解:为的直径,∴∴点P在以AB为直径的圆上运动,且在△ABC的内部,如图,记以AB为直径的圆的圆心为,连接交于点,连接∴当点三点共线时,即点P在点处时,CP有最小值,∵∴在中,∴∠∴∴两点距离最小时,点P的运动路径长为【点睛】本题主要考查了直径所对圆周角是直角,弧长公式,由锐角正切值求角度,确定点P的路径是解答本题的关键.70.(2022·江苏连云港)如图,是⊙的直径,是⊙的切线,为切点,连接,与⊙交于点,连接.若,则_________.【答案】49【分析】利用同弧所对的圆周角等于圆心角的一半求得∠B=∠AOD=41°,根据AC是⊙O的切线得到∠BAC=90°,即可求出答案.【详解】解:∵∠AOD=82°,∴∠B=∠AOD=41°,∵AC为圆的切线,A为切点,∴∠BAC=90°,∴∠C=90°-41°=49°故答案为49.【点睛】此题考查圆周角定理,圆的切线的性质定理,直角三角形两锐角互余,正确理解圆周角定理及切线的性质定理是解题的关键.71.(2022·浙江金华)如图,木工用角尺的短边紧靠⊙于点A,长边与⊙相切于点B,角尺的直角顶点为C,已知,则⊙的半径为_____.【答案】##【分析】设圆的半径为rcm,连接OB、OA,过点A作AD⊥OB,垂足为D,利用勾股定理,在Rt△AOD中,得到r2=(r−6)2+82,求出r即可.【详解】解:连接OB、OA,过点A作AD⊥OB,垂足为D,如图所示:∵CB与相切于点B,∴,∴,∴四边形ACBD为矩形,∴,,设圆的半径为rcm,在Rt△AOD中,根据勾股定理可得:,即r2=(r−6)2+82,解得:,即的半径为.故答案为:.【点睛】本题主要考查了切线的性质,矩形的判定和性质,勾股定理,作出辅助线,构造直角三角形,利用勾股定理列出关于半径r的方程,是解题的关键.72.(2022·四川成都)如图,已知⊙是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是_________.【答案】【分析】如图,设OA=a,则OB=OC=a,根据正方形内接圆和外接圆的关系,求出大正方形、小正方形和圆的面积,再根据概率公式计算即可.【详解】解:如图,设OA=a,则OB=OC=a,由正方形的性质可知∠AOB=90°,,由正方形的性质可得CD=CE=OC=a,∴DE=2a,S阴影=S圆-S小正方形=,S大正方形=,∴这个点取在阴影部分的概率是,故答案为:【点睛】本题考查了概率公式、正方形的性质、正方形外接圆和内切圆的特点、圆的面积计算,根据题意弄清楚图形之间的关系是解题的关键.73.(2022·山东泰安)如图,在中,,⊙过点A、C,与交于点D,与相切于点C,若,则__________【答案】##64度【分析】根据同弧对应的圆心角是圆周角的2倍计算出,再根据,内错角得到答案.【详解】如下图所示,连接OC从图中可以看出,是圆弧对应的圆周角,是圆弧对应的圆心角得.∵BC是圆O的切线∴∵∴∴∴故答案为:.【点睛】本题考查圆的切线的性质,圆周角定理、平行线的判定和性质,解题的关键是熟练掌握圆和平行线的相关知识.74.(2022·江苏苏州)如图,AB是的直径,弦CD交AB于点E,连接AC,AD.若,则______°【答案】62【分析】连接,根据直径所对的圆周角是90°,可得,由,可得,进而可得.【详解】解:连接,∵AB是的直径,∴,,,故答案为:62【点睛】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,掌握圆周角定理是解题的关键.75.(2022·湖北宜昌)如图,点,,都在方格纸的格点上,绕点顺时针方向旋转后得到,则点运动的路径的长为______.【答案】【分析】先求出AB的长,再根据弧长公式计算即可.【详解】由题意得,AC=4,BC=3,∴,∵绕点顺时针方向旋转后得到,∴,∴的长为:,故答案为:.【点睛】本题考查了旋转的性质,勾股定理和弧长公式,熟记弧长公式是解题的关键.76.(2022·浙江宁波·中考真题)如图,在△ABC中,AC=2,BC=4,点O在BC上,以OB为半径的圆与AC相切于点A,D是BC边上的动点,当△ACD为直角三角形时,AD的长为___________.【答案】或【分析】根据切线的性质定理,勾股定理,直角三角形的等面积法解答即可.【详解】解:连接OA,①当D点与O点重合时,∠CAD为90°,设圆的半径=r,∴OA=r,OC=4-r,∵AC=4,在Rt△AOC中,根据勾股定理可得:r2+4=(4-r)2,解得:r=,即AD=AO=;②当∠ADC=90°时,过点A作AD⊥BC于点D,∵AO•AC=OC•AD,∴AD=,∵AO=,AC=2,OC=4-r=,∴AD=,综上所述,AD的长为或,故答案为:或.【点睛】本题主要考查了切线的性质和勾股定理,熟练掌握这些性质定理是解决本题的关键.77.(2022·四川自贡·中考真题)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦长20厘米,弓形高为2厘米,则镜面半径为____________厘米.【答案】26【分析】令圆O的半径为OB=r,则OC=r-2,根据勾股定理求出OC2+BC2=OB2,进而求出半径.【详解】解:如图,由题意,得OD垂直平分AB,∴BC=10厘米,令圆O的半径为OB=r,则OC=r-2,在Rt△BOC中OC2+BC2=OB2,∴(r-2)2+102=r2,解得r=26.故答案为:26.【点睛】本题考查垂径定理和勾股定理求线段长,熟练地掌握圆的基本性质是解决问题的关键.78.(2022·浙江温州·中考真题)若扇形的圆心角为,半径为,则它的弧长为___________.【答案】π【分析】根据题目中的数据和弧长公式,可以计算出该扇形的弧长.【详解】解:∵扇形的圆心角为120°,半径为,∴它的弧长为:故答案为:【点睛】本题考查弧长的计算,解答本题的关键是明确弧长的计算公式79.(2022·新疆·中考真题)如图,⊙的半径为2,点A,B,C都在⊙上,若.则的长为_____(结果用含有的式子表示)【答案】【分析】利用同弧所对的圆心角是圆周角的2倍得到,再利用弧长公式求解即可.【详解】,,,⊙的半径为2,,故答案为:.【点睛】本题考查了圆周角定理和弧长公式,即,熟练掌握知识点是解题的关键.80.(2022·四川泸州·中考真题)如图,在中,,,,半径为1的在内平移(可以与该三角形的边相切),则点到上的点的距离的最大值为________.【答案】【分析】设直线AO交于M点(M在O点右边),当与AB、BC相切时,AM即为点到上的点的最大距离.【详解】设直线AO交于M点(M在O点右边),则点到上的点的距离的最大值为AM的长度当与AB、BC相切时,AM最长设切点分别为D、F,连接OB,如图∵,,∴,∴∵与AB、BC相切∴∵的半径为1∴∴∴∴∴∴点到上的点的距离的最大值为.【点睛】本题考查切线的性质、特殊角度三角函数值、勾股定理,解题的关键是确定点到上的点的最大距离的图形.81.(2022·四川凉山)如图,⊙O的直径AB经过弦CD的中点H,若cos∠CDB=,BD=5,则⊙O的半径为_______.【答案】【分析】先由垂径定理求得BC=BD=5,再由直径所对圆周角是直角∠ACB=90°,由余弦定义可推出sinA=,即可求得sinA=,然后由圆周角定理得∠A=∠D,,即可得,则半径可求.【详解】解:连接AC,如图,∵⊙O的直径AB经过弦CD的中点H,∴CH=DH,AB⊥CD,∴BC=BD=5,∵AB是⊙O的直径,∴∠ACB=90°,∴sinA=,∵∠A=∠D,∴cosA=cosD=,∴sinA=sinD=∴,∴AB=∴半径为【点睛】本题考查解直角三角形,圆周角定理,垂径定理的推论,求得∠ACB=90°、∠A=∠D是解题的关键.82.(2022·四川广元)如图,将⊙O沿弦AB折叠,恰经过圆心O,若AB=2,则阴影部分的面积为_____.【答案】##【分析】过点O作OD⊥AB于点D,交劣弧AB于点E,由题意易得,则有,然后根据特殊三角函数值及扇形面积公式可进行求解阴影部分的面积.【详解】解:过点O作OD⊥AB于点D,交劣弧AB于点E,如图所示:由题意可得:,∴,∴,∴弓形AB的面积为,∴阴影部分的面积为;故答案为.【点睛】本题主要考查扇形面积、轴对称的性质及三角函数,熟练掌握扇形面积、轴对称的性质及三角函数是解题的关键.83.(2022·广西玉林)如图,在网格中,各小正方形边长均为1,点O,A,B,C,D,E均在格点上,点O是的外心,在不添加其他字母的情况下,则除外把你认为外心也是O的三角形都写出来__________________________.【答案】△ADC、△BDC、△ABD【分析】先求出△ABC的外接圆半径r,再找到距离O点的长度同为r的点,即可求解.【详解】由网格图可知O点到A、B、C三点的距离均为:,则外接圆半径,图中D点到O点距离为:,图中E点到O点距离为:,则可知除△ABC外把你认为外心也是O的三角形有:△ADC、△ADB、△BDC,故答案为:△ADC、△ADB、△BDC.【点睛】本题考查了外接圆的性质、勾股定理等知识,求出△ABC的外接圆半径r是解答本题的关键.84.(2022·湖北恩施)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,⊙O为Rt△ABC的内切圆,则图中阴影部分的面积为(结果保留π)________.【答案】-【分析】利用切线长定理求得⊙O的半径,根据S阴影=S△ABC-(S扇形EOF+S扇形DOF)-S正方形CDOE列式计算即可求解.【详解】解:设切点分别为D、E、F,连接OD、OE、OF,∵⊙O为Rt△ABC的内切圆,∴AE=AF、BD=BF、CD=CE,OD⊥BC,OE⊥AC,∵∠C=90°,∴四边形CDOE为正方形,∴∠EOF+∠FOD=360°-90°=270°,设⊙O的半径为x,则CD=CE=x,AE=AF=4-x,BD=BF=3-x,∴4-x+3-x=5,解得x=1,∴S阴影=S△ABC-(S扇形EOF+S扇形DOF)-S正方形CDOE=×3×4-×1×1=-.故答案为:-.【点睛】本题考查了切线长定理,扇形的面积公式,熟记各图形的性质并准确识图是解题的关键.85.(2022·湖南岳阳)如图,在中,为直径,,为弦,过点的切线与的延长线交于点,为线段上一点(不与点重合),且.(1)若,则的长为______(结果保留);(2)若,则______.【答案】
【分析】(1)根据圆周角定理求出∠AOD=70°,再利用弧长公式求解;(2)解直角三角形求出BC,AD,BD,再利用相似三角形的性质求出DE,BE,可得结论.【详解】解:(1)∵,∴的长;故答案为:;(2)连接,∵是切线,是直径,∴,∴,∵是直径,∴,∴,∴,∴,∴,∵,,∴,∴,∴,∴,∴,∴,∴.故答案为:.【点睛】本题主要考查圆的相关知识,相似三角形的判定和性质,解直角三角形等知识,熟练掌握各性质及判定定理,正确寻找相似三角形解决问题是解题的关键.86.(2022·湖南永州)如图,是的直径,点、在上,,则______度.【答案】120【分析】利用同弧所对的圆周角等于圆心角的一半得出,则.【详解】解:∵,是弧AC所对的圆周角,是弧AC所对的圆心角,∴,∴,故答案为:120.【点睛】本题考查圆周角定理,熟练掌握“同弧所对的圆周角等于圆心角的一半”是解题的关键.87.(2022·湖北武汉)如图,点P是上一点,是一条弦,点C是上一点,与点D关于对称,交于点E,与交于点F,且.给出下面四个结论:①平分;
②;
③;
④为的切线.其中所有正确结论的序号是_________________.【答案】①②④【分析】根据点AB为CD的垂直平分线,得出BD=BC,AD=AC,根据等边对等角得出∠BDC=∠BCD,利用平行线性质可判断①正确;利用△ADB≌△ACB(SSS)得出∠EAB=∠CAB,利用圆周角弧与弦关系可判断②正确;根据等弧所对的圆周角相等可得∠AEF≠∠ABE,从而可得△AEF与△ABE不相似,即可判断③;连结OB,利用垂径定理得出OB⊥CE,利用平行线性质得出OB⊥BD,即可判断④正确.【详解】解:∵点C是上一点,与点D关于对称,∴AB为CD的垂直平分线,∴BD=BC,AD=AC,∴∠BDC=∠BCD,∵,∴∠ECD=∠CDB,∴∠ECD=∠BCD,∴CD平分∠BCE,故①正确;在△ADB和△ACB中,∵AD=AC,BD=BC,AB=AB,∴△ADB≌△ACB(SSS),∴∠EAB=∠CAB,∴,∴BE=BC=BD,故②正确;∵AC≠AE,∴≠,∴∠AEF≠∠ABE,∴△AEF与△ABE不相似,故③错误;连结OB,∵,CE为弦,∴OB⊥CE,∵,∴OB⊥BD,∴BD为的切线.故④正确,∴其中所有正确结论的序号是①②④.故答案为①②④..【点睛】本题考查轴对称性质,线段垂直平分线性质,角平分线判定,三角形全等判断于性质,垂径定理,切线判断,掌握轴对称性质,线段垂直平分线性质,角平分线判定,三角形全等判断于性质,垂径定理,切线判断是解题关键.88.(2022·江苏泰州)如图,PA与⊙O相切于点A,PO与⊙O相交于点B,点C在上,且与点A,B不重合,若∠P=26°,则∠C的度数为_________°.【答案】32【分析】连接OA,根据切线的性质和直角三角形的性质求出∠O=64°.再根据圆周角的定理,求解即可.【详解】解:连接OA,∵PA与⊙O相切于点A,∴∠PAO=90°,∴∠O=90°-∠P,∵∠P=26°,∴∠O=64°,∴∠C=∠O=32°.故答案为:32.【点睛】此题考查了切线的性质以及圆周角定理,解题的关键是正确利用切线的定理,作出辅助线,求出∠O的度数.89.(2022·湖南郴州)如图,圆锥的母线长,底面圆的直径,则该圆锥的侧面积等于________.(结果用含的式子表示)【答案】【分析】根据圆锥的侧面积=底面周长×母线长÷2,即可求出答案.【详解】解:根据题意,∵圆锥的母线长,底面圆的直径,∴圆锥的侧面积为:;故答案为:;【点睛】本题考查了求圆锥的侧面积,解题的关键是利用了圆的周长公式和扇形面积公式求解.90.(2022·辽宁锦州)如图,在中,,以为直径的交边于D,E两点,,则的长是____________.【答案】【分析】连接OE,OD,根据等腰三角形的性质,求得∠DOE=50°,半径为1,代入弧长公式计算即可.【详解】连接OE,OD,∵,OB=OD,OA=OE,∴∠B=∠ODB=65°,∠A=∠OEA=50°,∴∠BOD=50°,∠AOE=80°,∴∠DOE=50°,半径为1,的长是.故答案为:.【点睛】本题考查了等腰三角形的性质,弧长公式,熟练掌握弧长公式是解题的关键.91.(2022·辽宁)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC=130°,连接AC,则∠BAC的度数为___________.【答案】40°##40度【分析】首先利用圆内接四边形的性质和∠ADC的度数求得∠B的度数,然后利用直径所对的圆周角是直角确定∠ACB=90°,然后利用直角三角形的两个锐角互余求得答案即可.【详解】解:∵四边形ABCD内接与⊙O,∠ADC=130°,∴∠B=180°-∠ADC=180°-130°=50°,∵AB为直径,∴∠ACB=90°,∴∠CAB=90°-∠B=90°-50°=40°,故答案为:40°.【点睛】本题考查了圆内接四边形的性质及圆周角定理的知识,解题的关键是了解圆内接四边形的对角互补.92.(2022·辽宁营口)如图,在正六边形中,连接,则____________度.【答案】30【分析】连接BE,交CF与点O,连接OA,先求出,再根据等腰三角形等边对等角的性质,三角形外角的性质求解即可.【详解】连接BE,交CF与点O,连接OA,在正六边形中,,,故答案为:30.【点睛】本题考查了正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 除尘设备产业分析报告
- 抗血吸虫病药战略市场规划报告
- 对顶角、余角和补角 教案 2024-2025学年北师大版数学七年级下册
- 厂房使用合同范本
- 受托支付合同范本简易
- 化肥提供合同范本
- 机械基础考试模拟题+参考答案
- 信息保密合同范本
- 卖房给中介合同范本
- 保姆合同范本带小孩
- DeepSeek:从入门到精通
- 天津2025年天津中德应用技术大学辅导员岗位招聘7人笔试历年参考题库附带答案详解
- 2025年无锡职业技术学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 2025年铜材拉丝项目可行性研究报告
- 2025四川宜宾市高县县属国企业第一次招聘3人易考易错模拟试题(共500题)试卷后附参考答案
- 2024 年国家公务员考试《申论》(地市级)真题及答案
- 南京2025年中国医学科学院皮肤病医院招聘13人第二批笔试历年典型考点(频考版试卷)附带答案详解
- 2025年1月浙江高考英语听力试题真题完整版(含答案+文本+MP3)
- T-IMAS 087-2024 托克托县辣椒地方品种提纯复壮技术规程
- 2025年全国道路运输企业安全管理人员考试题库(含答案)
- 太阳能光伏发电安装工程监理实施细则
评论
0/150
提交评论