下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
-.z.GDOU-B-11-112广东海洋大学学生实验报告书〔学生用表〕GDOU-B-11-112实验名称图像的根本操作课程名称数字图像处理课程号学院(系)信息学院专业电子信息工程班级电子1103班学生姓名杜嘉星**8实验地点实验日期实验7图像的噪声及恢复一、实验目的:了解图像的噪声模型,学习降低噪声、恢复图像的处理方法二、实验内容:学习并使用imnoise、spfilt等产生噪声和滤波的函数1、噪声模拟图像增强操作主要是针对图像的各种噪声而言的。数字图像产生噪声的途径有很多种。MATLAB图像处理工具箱提供imnoise函数,可以用该函数给图像添加不同种类的噪声,该函数的调用格式如下:g=imnoise(f,‘type’,parameters)。f是输入图像,type和parameters的说明见下表:typeparameters说明gaussianm,v均值为m,方差为v的高斯噪声localvarv均值为0,方差为v的高斯白噪声Poisson无泊松噪声salt&pepperd噪声密度为d的椒盐噪声specklev均值为0,方差为v的均匀分布随机噪声函数imnoise在给图像添加噪声前,将它转换为范围[01]内的double类图像。指定噪声参数时必须考虑到这一点。例如要将均值为64、方差为400的高斯噪声添加到一幅uint8类图像上,我们可将均值标度为64/255,将方差标度为400/(255)2,以便作为函数imnoise的输入。读入一幅图像,使用上述函数对它添加各类噪声。退化函数建模在图像复原问题中,一个重要的退化模型是在图像获取时传感器和场景之间的均匀线性运动而产生的图像模糊。我们可以使用函数fspecial对图像模糊建模:PSF=fspecial(‘motion’,len,theta)。调用fspecial将返回PSF,它近似于由有着len个像素的摄像机的线性移动的效果。参数theta以度为单位,以顺时针方向对正水平轴度量。len的默认值是9,theta的默认值是0,它对应于在水平方向上的9个像素的移动。我们使用函数imfilter来创立一个PSF或用刚刚描述的方法计算得到的PSF的退化图像:g=imfilter(f,PSF,’circular’)。其中,’circular’用来减少边界效应。然后通过添加适当的噪声来构造退化的图像模型:g=g+noise。噪声的产生方法见内容1。例如,我们先产生一个测试板图像:f=checkerboard(8)。退化图像使用如下命令产生:PSF=fspecial(‘motion’,7,45);gb=imfilter(f,PSF,‘circular’)。噪声模式使用下面命令产生:noise=imnoise(zeros(size(f)),‘gaussian’,0,0.001)。通常,我们会直接使用imnoise(gb,‘gaussian’,0,0.001)将噪声加到gb上,然而由于稍后需要噪声图像,所以在此我们单独计算噪声。加了噪声的模糊图像如下产生:g=gb+noise。运行上述命令,观察实验结果,注释每条命令。仿照上述命令自己产生一个模糊噪声图像。直接逆滤波和维纳滤波:维纳滤波使用函数deconvwnr来实现。函数deconvwnr有三种可能的语法形式。在这些形式中,g代表退化图像,fr是复原图像。第一种语法形式fr=deconvwnr(g,PSF)假设信噪比为零,从而维纳滤波器就是逆滤波器。第二种语法形式fr=deconvwnr(g,PSF,NSPR)假设信噪比功率,或是个常数或是个数组,函数承受其中的任何一个,这是一个参数维纳滤波器。最后,语法形式fr=deconvwnr(g,PSF,NACORR,FACORR)假设噪声和未退化图像的自相关函数NACORR和FACORR是的。我们可以使用内容2中的例子建立加了噪声的模糊图像模型,使用deconvwnr函数来复原模糊噪声图像。如下命令:fr1=deconvwnr(g,PSF);fr1是直接逆滤波的结果,g是污染了的图像,PSF是上例中计算出的点扩散函数。由于噪声的影响,结果并不理想。则如果g不含噪声,使用直接逆滤波效果又是如何呢?实验验证你的结论。我们还可以用第二种语法形式的参数维纳滤波器进展滤波,命令如下:%计算信噪比Sn=abs(fft2(noise)).^2;nA=sum(Sn(:))/prod(size(noise));Sf=abs(fft2(f)).^2;fA=sum(Sf(:))/prod(size(f));R=nA/fA;%维纳滤波fr2=deconvwnr(g,PSF,R);fr2和fr1相比拟效果要优越得多。运行上述命令,观察实验结果,注释每条命令,并答复相关问题。仿照上述命令对自己产生的模糊噪声图像进展恢复。三、实验要求:写出处理过程,提交原图像、噪声图像、模糊图像和恢复后的图像,注释每条命令,并答复相关问题。四丶实验程序代码及图片:对图片添加各类噪声:clearall;closeall;clc;f=imread('D:\image\avril.jpg');subplot(231);imshow(f);*label('(a)原图');g=imnoise(f,'gaussian',0,0.02);%添加高斯噪声subplot(232),imshow(g);*label('(b)高斯噪声');g=imnoise(f,'Poisson');%添加泊松噪声subplot(233);imshow(g);*label('(c)泊松噪声');g=imnoise(f,'salt&pepper',0.02);%添加椒盐噪声subplot(234);imshow(g);*label('(d)椒盐噪声');g=imnoise(f,'speckle',0.01);%添加随机噪声subplot(235);imshow(g);*label('(e)随机噪声');对图像进展退化函数建模:f=imread('avril.jpg');%读取图片subplot(1,2,1);imshow(I);title('avril');PSF=fspecial('motion',20,45);%对图像模糊建模g=imfilter(f,PSF,'circular');%得到PSF的退化图片imnoise(gb,'gaussian',0,0.001);%添加噪声subplot(1,2,2);g=gb+noise;%产生加了噪声的模糊图像imshow(g);title('模糊噪声图像');添加噪声后的图片直接滤波:f=imread('avril.jpg');%读取图片subplot(1,3,1);imshow(I);title('avril');PSF=fspecial('motion',20,45);%对图像模糊建模g=imfilter(f,PSF,'circular');%得到PSF的退化图片imnoise(gb,'gaussian',0,0.001);%添加噪声subplot(1,3,2);g=gb+noise;%产生加了噪声的模糊图像imshow(g);title('模糊噪声图像');fr1=deconvwnr(g,PSF);subplot(1,3,3);imshow(fr1);title('添加噪声直接滤波后图像');不对图片加噪声,直接滤波:f=imread('avril.jpg');%读取图片subplot(1,3,1);imshow(I);title('avril');PSF=fspecial('motion',20,45);%对图像模糊建模g=imfilter(f,PSF,'circular');%得到PSF的退化图片fr1=deconvwnr(g,PSF);subplot(1,3,3);imshow(fr1);title('不含噪声,直接逆滤波');维纳滤波:f=imread('avril.jpg');%读取图片subplot(1,3,1);imshow(I);title('avril');noise=imnoise(zeros(size(f)),'gaussian',0,0.001);%给模版添加噪声%计算信噪比Sn=abs(fft2(noise)).^2;nA=sum(Sn(:))/prod(size(noise));Sf=abs(fft2(f)).^2;fA=sum(Sf(:))/prod(size(f));R=nA/fA;%维纳滤波fr2=deconvwnr(g,PSF,R);subplot(122);imshow(fr2);title('维纳滤波');
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 赠钱协议书范本
- 销售电热器协议书
- 业绩承包协议书
- 延保退款协议书
- 营运服务协议书
- 应急住房协议书
- 2025浙江吉利控股集团G-TOP博士专项招聘笔试重点题库及答案解析
- 展位变更协议书
- 巡山记录协议书
- 舞狮表演协议书
- 2025年四川军事理论专升本考试复习题库附答案
- 2025年民航上海医院(瑞金医院古北分院)事业编制公开招聘62人备考题库带答案详解
- 2025年云南省人民检察院聘用制书记员招聘(22人)备考考试题库及答案解析
- 2025西部机场集团航空物流有限公司招聘笔试参考题库附带答案详解(3卷)
- 橙子分拣装箱一体机结构设计
- (一诊)达州市2026届高三第一次诊断性测试生物试题(含标准答案)
- 员工宿舍楼装修改造工程施工组织设计方案
- 钱铭怡《心理咨询与心理治疗》笔记和习题(含考研真题)详解
- 防水工程专项施工方案
- JJG 1148-2022 电动汽车交流充电桩(试行)
- 脑机接口技术与应用研究报告(2025年)
评论
0/150
提交评论