材料力学07强度理论课件_第1页
材料力学07强度理论课件_第2页
材料力学07强度理论课件_第3页
材料力学07强度理论课件_第4页
材料力学07强度理论课件_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第七章强度理论10/28/20221第七章10/22/20221(拉压)(弯曲)(正应力强度条件)(弯曲)(扭转)(切应力强度条件)1.杆件基本变形下的强度条件7-10、概述10/28/20222(拉压)(弯曲)(正应力强度条件)(弯曲)(扭转)(切应力强满足是否强度就没有问题了?7-10、概述10/28/20223满足是否强度就没有问题了?7-10、概述10/22/2强度理论:人们根据大量的破坏现象,通过判断推理、概括,提出了种种关于破坏原因的假说,找出引起破坏的主要因素,经过实践检验,不断完善,在一定范围与实际相符合,上升为理论。为了建立复杂应力状态下的强度条件,而提出的关于材料破坏原因的假设及计算方法。7-11、经典强度理论10/28/20224强度理论:人们根据大量的破坏现象,通过判断推理、概括,提出了构件由于强度不足将引发两种失效形式(1)脆性断裂:材料无明显的塑性变形即发生断裂,断面较粗糙,且多发生在垂直于最大正应力的截面上,如铸铁受拉、扭,低温脆断等。关于屈服的强度理论:最大切应力理论和形状改变比能理论(2)塑性屈服(流动):材料破坏前发生显著的塑性变形,破坏断面粒子较光滑,且多发生在最大剪应力面上,例如低碳钢拉、扭,铸铁压。关于断裂的强度理论:最大拉应力理论和最大伸长线应变理论7-11、经典强度理论10/28/20225构件由于强度不足将引发两种失效形式(1)脆性断裂:材料1.最大拉应力理论(第一强度理论)材料发生断裂的主要因素是最大拉应力达到极限值-构件危险点的最大拉应力-极限拉应力,由单拉实验测得7-11、经典强度理论10/28/202261.最大拉应力理论(第一强度理论)材料发生断裂的主要因断裂条件强度条件1.最大拉应力理论(第一强度理论)铸铁拉伸铸铁扭转7-11、经典强度理论10/28/20227断裂条件强度条件1.最大拉应力理论(第一强度理论)铸铁拉伸2.最大伸长拉应变理论(第二强度理论)无论材料处于什么应力状态,只要发生脆性断裂,都是由于微元内的最大拉应变(线变形)达到简单拉伸时的破坏伸长应变数值。-构件危险点的最大伸长线应变-极限伸长线应变,由单向拉伸实验测得7-11、经典强度理论10/28/202282.最大伸长拉应变理论(第二强度理论)无论材料处于实验表明:此理论对于一拉一压的二向应力状态的脆性材料的断裂较符合,如铸铁受拉压比第一强度理论更接近实际情况。强度条件2.最大伸长拉应变理论(第二强度理论)断裂条件即7-11、经典强度理论10/28/20229实验表明:此理论对于一拉一压的二向应力状态的脆强度条件2.无论材料处于什么应力状态,只要发生屈服,都是由于微元内的最大切应力达到了某一极限值。3.最大切应力理论(第三强度理论)-构件危险点的最大切应力-极限切应力,由单向拉伸实验测得7-11、经典强度理论10/28/202210无论材料处于什么应力状态,只要发生屈服,都是由于微元屈服条件强度条件3.最大切应力理论(第三强度理论)低碳钢拉伸低碳钢扭转7-11、经典强度理论10/28/202211屈服条件强度条件3.最大切应力理论(第三强度理论)低碳钢拉实验表明:此理论对于塑性材料的屈服破坏能够得到较为满意的解释。并能解释材料在三向均压下不发生塑性变形或断裂的事实。局限性:2、不能解释三向均拉下可能发生断裂的现象,1、未考虑的影响,试验证实最大影响达15%。3.最大切应力理论(第三强度理论)7-11、经典强度理论10/28/202212实验表明:此理论对于塑性材料的屈服破坏能够得到局限性:2无论材料处于什么应力状态,只要发生屈服,都是由于微元的最大形状改变比能达到一个极限值。4.形状改变比能理论(第四强度理论)-构件危险点的形状改变比能-形状改变比能的极限值,由单拉实验测得7-11、经典强度理论10/28/202213无论材料处于什么应力状态,只要发生屈服,都是由于微元屈服条件强度条件4.形状改变比能理论(第四强度理论)实验表明:对塑性材料,此理论比第三强度理论更符合试验结果,在工程中得到了广泛应用。7-11、经典强度理论10/28/202214屈服条件强度条件4.形状改变比能理论(第四强度理论)实验表强度理论的统一表达式:相当应力7-11、经典强度理论10/28/202215强度理论的统一表达式:相当应力7-11、经典强度理论10/2第七章强度理论10/28/202216第七章10/22/20221(拉压)(弯曲)(正应力强度条件)(弯曲)(扭转)(切应力强度条件)1.杆件基本变形下的强度条件7-10、概述10/28/202217(拉压)(弯曲)(正应力强度条件)(弯曲)(扭转)(切应力强满足是否强度就没有问题了?7-10、概述10/28/202218满足是否强度就没有问题了?7-10、概述10/22/2强度理论:人们根据大量的破坏现象,通过判断推理、概括,提出了种种关于破坏原因的假说,找出引起破坏的主要因素,经过实践检验,不断完善,在一定范围与实际相符合,上升为理论。为了建立复杂应力状态下的强度条件,而提出的关于材料破坏原因的假设及计算方法。7-11、经典强度理论10/28/202219强度理论:人们根据大量的破坏现象,通过判断推理、概括,提出了构件由于强度不足将引发两种失效形式(1)脆性断裂:材料无明显的塑性变形即发生断裂,断面较粗糙,且多发生在垂直于最大正应力的截面上,如铸铁受拉、扭,低温脆断等。关于屈服的强度理论:最大切应力理论和形状改变比能理论(2)塑性屈服(流动):材料破坏前发生显著的塑性变形,破坏断面粒子较光滑,且多发生在最大剪应力面上,例如低碳钢拉、扭,铸铁压。关于断裂的强度理论:最大拉应力理论和最大伸长线应变理论7-11、经典强度理论10/28/202220构件由于强度不足将引发两种失效形式(1)脆性断裂:材料1.最大拉应力理论(第一强度理论)材料发生断裂的主要因素是最大拉应力达到极限值-构件危险点的最大拉应力-极限拉应力,由单拉实验测得7-11、经典强度理论10/28/2022211.最大拉应力理论(第一强度理论)材料发生断裂的主要因断裂条件强度条件1.最大拉应力理论(第一强度理论)铸铁拉伸铸铁扭转7-11、经典强度理论10/28/202222断裂条件强度条件1.最大拉应力理论(第一强度理论)铸铁拉伸2.最大伸长拉应变理论(第二强度理论)无论材料处于什么应力状态,只要发生脆性断裂,都是由于微元内的最大拉应变(线变形)达到简单拉伸时的破坏伸长应变数值。-构件危险点的最大伸长线应变-极限伸长线应变,由单向拉伸实验测得7-11、经典强度理论10/28/2022232.最大伸长拉应变理论(第二强度理论)无论材料处于实验表明:此理论对于一拉一压的二向应力状态的脆性材料的断裂较符合,如铸铁受拉压比第一强度理论更接近实际情况。强度条件2.最大伸长拉应变理论(第二强度理论)断裂条件即7-11、经典强度理论10/28/202224实验表明:此理论对于一拉一压的二向应力状态的脆强度条件2.无论材料处于什么应力状态,只要发生屈服,都是由于微元内的最大切应力达到了某一极限值。3.最大切应力理论(第三强度理论)-构件危险点的最大切应力-极限切应力,由单向拉伸实验测得7-11、经典强度理论10/28/202225无论材料处于什么应力状态,只要发生屈服,都是由于微元屈服条件强度条件3.最大切应力理论(第三强度理论)低碳钢拉伸低碳钢扭转7-11、经典强度理论10/28/202226屈服条件强度条件3.最大切应力理论(第三强度理论)低碳钢拉实验表明:此理论对于塑性材料的屈服破坏能够得到较为满意的解释。并能解释材料在三向均压下不发生塑性变形或断裂的事实。局限性:2、不能解释三向均拉下可能发生断裂的现象,1、未考虑的影响,试验证实最大影响达15%。3.最大切应力理论(第三强度理论)7-11、经典强度理论10/28/202227实验表明:此理论对于塑性材料的屈服破坏能够得到局限性:2无论材料处于什么应力状态,只要发生屈服,都是由于微元的最大形状改变比能达到一个极限值。4.形状改变比能理论(第四强度理论)-构件危险点的形状改变比能-形状改变比能的极限值,由单拉实验测得7-11、经典强度理论10/28/202228无论材料处于什么应力状态,只要发生屈服,都是由于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论