1993年高考数学试卷及详解【独家收藏,绝对珍品!】_第1页
1993年高考数学试卷及详解【独家收藏,绝对珍品!】_第2页
1993年高考数学试卷及详解【独家收藏,绝对珍品!】_第3页
1993年高考数学试卷及详解【独家收藏,绝对珍品!】_第4页
1993年高考数学试卷及详解【独家收藏,绝对珍品!】_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1993年试题(理工农医类)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.把所选项前的字母填在题后括号内.(1)如果双曲线的实半轴长为2,焦距为6,那么该双曲线的离心率为【】[Key]一、选择题:本题考查基本知识和基本运算.(1)C【】[Key](2)B(A)45°(B)60°(C)90°(D)120°【】[Key](3)C(A)1(B)-1(C)i(D)-i【】[Key](4)D(5)直线bx+ay=ab(a<0,b<0)的倾斜角是【】[Key](5)C(6)在直角三角形中两锐角为A和B,则sinAsinB(C)既无最大值也无最小值(D)有最大值1,但无最小值【】[Key](6)B(7)在各项均为正数的等比数列{an}中,若a5a6=9,则log3a1+log3a2+…+log3a10=(A)12(B)10(C)8(D)2+log35【】[Key](7)B(A)是奇函数(B)是偶函数(C)可能是奇函数也可能是偶函数(D)不是奇函数也不是偶函数【】[Key](8)A(A)线段(B)双曲线的一支(C)圆弧(D)射线【】[Key](9)A(10)若a、b是任意实数,且a>b,则【】[Key](10)D(11)已知集合E={θ│cosθ<sinθ,0≤θ≤2π},F={θ│tgθ<sinθ},那么E∩F为区间【】[Key](11)A(12)一动圆与两圆:x2+y2=1和x2+y2-8x+12=0都外切,则动圆圆心的轨迹为(A)抛物线(B)圆(C)双曲线的一支(D)椭圆【】[Key](12)C(A)三棱锥(B)四棱锥(C)五棱锥(D)六棱锥【】[Key](13)D(14)如果圆柱轴截面的周长l为定值,那么圆柱体积的最大值是【】[Key](14)A(A)50项(B)17项(C)16项(D)15项【】[Key](15)B(16)设a,b,c都是正数,且3a=4b=6c,那么【】[Key](16)B(17)同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有(A)6种(B)9种(C)11种(D)23种【】[Key](17)B(18)已知异面直线a与b所成的角为50°,P为空间一定点,则过点P且与a,b所成的角都是30°的直线有且仅有(A)1条(B)2条(C)3条(D)4条【】[Key](18)B二、填空题:把答案填在题中横线上.(20)在半径为30m的圆形广场中央上空,设置一个照明光源,射向地面的光呈圆锥形,且其轴截面顶角为120°.若要光源恰好照亮整个广场,则其高度应为m(精确到0.1m).(21)在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共种(用数字作答).(22)建造一个容积为8m3,深为2m的长方体无盖水池.如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为元.(23)设f(x)=4x-2x+1,则f-1(0)=.[Key]二、填空题:本题考查基本知识和基本运算.(19)2(20)17.3(21)4186三、解答题:解答应写出文字说明、演算步骤.[Key]三、解答题.(25)本小题考查对数函数的概念及性质,不等式的解法.(26)如图,A1B1C1-ABC是直三棱柱,过点A1、B、C1的平面和平面ABC的交线记作l.(Ⅰ)判定直线A1C1和l的位置关系,并加以证明;(Ⅱ)若A1A=1,AB=4,BC=3,∠ABC=90°,求顶点到直线l的距离.[Key](26)本小题主要考查空间图形的线面关系、三棱柱的性质、空间想象能力和逻辑推理能力.解:(Ⅰ)l∥A1C1.证明如下:根据棱柱的定义知平面A1B1C1和平面ABC平行.由题设知直线A1C1=平面A1B1C1∩平面A1BC1,直线l=平面A1BC1∩平面ABC.根据两平面平行的性质定理有l∥A1C1.(Ⅱ)解法一:过点A1作A1E⊥l于E,则A1E的长为点A1到l的距离.连结AE.由直棱柱的定义知A1A⊥平面ABC.∴直线AE是直线A1E在平面ABC上的射影.又l在平面ABC上,根据三垂线定理的逆定理有AE⊥l.由棱柱的定义知A1C1∥AC,又l∥A1C1,∵l∥AC.作BD⊥AC于D,则BD是Rt△ABC斜边AC上的高,且BD=AE,在Rt△A1AE中,∵A1A=1,∠A1AE=90°,解法二:同解法一得l∥AC.由平行直线的性质定理知∠CAB=∠ABE,从而有Rt△ABC∽Rt△BEA,AE:BC=AB:AC,以下同解法一.出以M,N为焦点且过点P的椭圆方程.[Key](27)本小题主要考查坐标系、椭圆的概念和性质、直线方程以及综合应用的能力.解法一:建立直角坐标系如图:以MN所在直线为x轴,线段MN的垂直平分线为y轴.(c,0)和(x0,y0).∵tgα=tg(π-∠N)=2,∴由题设知解法二:[Key](28)本小题考查复数的基本概念和运算,三角函数式的恒等变形及综合解题能力.(29)已知关于x的实系数二次方程x2+ax+b=0有两个实数根α,β.证明:(Ⅰ)如果│α│<2,│β│<2,那么2│α│<4+b且│b│<4;(Ⅱ)如果2│α│<4+b且│b│<4,那么│α│<2,│β│<2.[Key](29)本小题考查一元二次方程根与系数的关系,绝对值不等式的性质和证明;逻辑推理能力和分析问题、解决问题的能力.证法一:依题设,二次方程有两个实根α,β,所以判别式△=a2-4b≥0.平方得a2-4b<16-8a+a2,a2-4b<16+8a+a2,由此得-4(4+b)<8a<4(4+b),∴2│a│<4+b.(Ⅱ)∵2│a│<4+b,│b│<4,4±a>0;且△=a2-4b<a2-4(2│a│-4)=a2±8a+16=(4±a)2,又△≥0,∴-2<α≤β<2,得│α│<2,│β│<2.证法二:(Ⅰ)根据韦达定理│b│=│αβ│<4.因为二次函数f(x)=x2+ax+b开口向上,│α│<2,│β│<2.故必有f(±2)>0,即4+2a+b>0,2a>-(4+b);4-2a+b>0,2a<4+b.∴2│a│<4+b.(Ⅱ)由2│a│<4+b得4+2a+b>0即22+2a+b>0,f(2)>0.①及4-2a+b>0即(-2)2+(-2)a+b>0,f(-2)>0.②由此可知f(x)=0的每个实根或

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论