



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
-让每个人同样地提升自我面面垂直的判断1、如图,棱柱ABCA1B1C1的侧面BCC1B1是菱形,且B1CA1B证明:平面AB1C平面A1BC12、如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同样于A,B的任意一点,求证:平面PAC⊥平面PBC.3、以下列图,四棱锥P-ABCD的底面ABCD是菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,求证:平面PBE⊥平面PAB;1-让每个人同样地提升自我4、如图,在周围体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD的中点.求证:(1)直线EF∥平面ACD;(2)平面EFC⊥平面BCD.5、如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB,点M是SD的中点,AN⊥SC,且交SC于点N.(I)求证:SB∥平面ACM;(II)求证:平面SAC⊥平面AMN.2-让每个人同样地提升自我面面垂直的性质1、S是△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC,求证AB⊥BC.SCAB2、在四棱锥中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD证明:AB⊥平面VADVDCAB3、如图,平行四边形ABCD中,DAB60,AB2,AD4将CBD沿BD折起到EBD的地址,使平面EDB平面ABD。求证:ABDE3-让每个人同样地提升自我4、如图,在四棱锥PABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:(1)直线EF‖平面PCD;(2)平面BEF⊥平面PAD5、以下列图,在四棱锥PABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=45.M是PC上的一点,(1)证明:平面MBD⊥平面PAD.(2)求四棱锥P-ABCD的体积。6、如图,在四棱锥PABCD中,AB//CD,ABAD,CD2AB,平面PAD底面ABCD,PAAD,E和F分别是CD和PC的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电梯轿厢租赁协议书模板
- 驳回经纪合同解除协议书
- 附条件与附期限合同范本
- 签劳动协议不签劳动合同
- 浙江电商管理咨询协议书
- 机械厂员工外包合同协议
- 瓷砖维修质保协议书范本
- 法人代表转让协议协议书
- 空置楼房拆除补偿协议书
- 离心加湿器采购合同协议
- 劳务派遣与服务协议
- 2025年新修订治安管理处罚法课件
- 消费者权益保护培训课件
- DB11T 2454-2025 职业健康检查质量控制规范 生物样本化学物质检测
- 贸易公司员工职业操守行为准则制度
- 电气安全基础知识安全培训
- 部门保密培训课件
- 福建省南平市2024-2025学年八年级下学期期末考试数学试卷(含答案)
- 工厂绩效计件方案(3篇)
- 慢性阻塞性肺疾病急性加重(AECOPD)
- 尿路感染多重耐药诊疗与管理
评论
0/150
提交评论