2022-2023学年甘肃省张掖市临泽二中学、三中学、四中学八年级数学第一学期期末质量跟踪监视模拟试题含解析_第1页
2022-2023学年甘肃省张掖市临泽二中学、三中学、四中学八年级数学第一学期期末质量跟踪监视模拟试题含解析_第2页
2022-2023学年甘肃省张掖市临泽二中学、三中学、四中学八年级数学第一学期期末质量跟踪监视模拟试题含解析_第3页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.袋中装有3个绿球和4个红球,它们除颜色外,其余均相同。从袋中摸出4个球,下列属于必然事件的是()A.摸出的4个球其中一个是绿球 B.摸出的4个球其中一个是红球C.摸出的4个球有一个绿球和一个红球 D.摸出的4个球中没有红球2.下列能用平方差公式计算的是().A. B.C. D.3.下式等式从左到右的变形,属于因式分解的是()A.; B.;C.; D..4.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.∠A、∠B两内角的平分线的交点处B.AC、AB两边高线的交点处C.AC、AB两边中线的交点处D.AC、AB两边垂直平分线的交点处5.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y.则下列图象能大致反映y与x的函数关系的是()A. B. C. D.6.命题:①对顶角相等;②平面内垂直于同一条直线的两直线平行;③同位角相等④相等的角是对顶角;其中假命题有()A.1个 B.2个 C.3个 D.4个7.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.BD=CE B.AD=AE C.DA=DE D.BE=CD8.若,则下列式子正确的是()A. B. C. D.9.下列大学的校徽图案是轴对称图形的是()A. B. C. D.10.下列命题中,是真命题的是()①两条直线被第三条直线所截,同位角相等;②在同一平面内,垂直于同一直线的两条直线互相平行③三角形的三条高中,必有一条在三角形的内部④三角形的三个外角一定都是锐角A.①② B.②③ C.①③ D.③④二、填空题(每小题3分,共24分)11.若关于和的二元一次方程组,满足,那么的取值范围是_____.12.4的平方根是.13.在正整数中,利用上述规律,计算_____.14.若x=﹣1,则x3+x2-3x+2020的值为____________.15.下列事件:①射击1次,中靶;②打开电视,正在播广告;③地球上,太阳东升西落.其中必然事件的有_____.(只填序号).16.分解因式:.17.分解因式的结果为__________.18.小明从家跑步到学校,接着马上原路步行回家.如图所示为小明离家的路程与时间的图像,则小明回家的速度是每分钟步行________m.三、解答题(共66分)19.(10分)如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,(1)求D、E两点的坐标.(2)求过D、E两点的直线函数表达式20.(6分)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Napier,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Euler,1707-1783年)才发现指数与对数之间的联系,对数的定义:一般地,若,那么x叫做以a为底N的对数,记作:,比如指数式可以转化为,对数式可以转化为,我们根据对数的定义可得到对数的一个性质:),理由如下:设则∴,由对数的定义得又∵,所以,解决以下问题:(1)将指数转化为对数式____;计算___;(2)求证:(3)拓展运用:计算21.(6分)阅读下列材料:材料1、将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(x+n).(1)x2+4x+1=(x+1)(x+1)(2)x2﹣4x﹣12=(x﹣6)(x+2)材料2、因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2上述解题用到“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把x2﹣6x+8分解因式.(2)结合材料1和材料2,完成下面小题:①分解因式:(x﹣y)2+4(x﹣y)+1;②分解因式:m(m+2)(m2+2m﹣2)﹣1.22.(8分)如图,已知点坐标为点坐标为点坐标为.(1)在图中画出关于轴对称的,写出点的坐标:,,;(2)求的面积.23.(8分)如图①所示是一个长为,宽为的长方形,沿图中虚线用剪刀均分成相等个小长方形.然后按图②的方式拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积:方法①;方法②;(3)观察图②,写出,,这三个代数式之间的等量关系:;(4)根据(3)题中的等量关系,解决如下问题:若,,求的值?24.(8分)如图,在等腰△ABC中,AC=BC,D,E分别为AB,BC上一点,∠CDE=∠A.(1)如图1,若BC=BD,∠ACB=90°,则∠DEC度数为_________°;(2)如图2,若BC=BD,求证:CD=DE;(3)如图3,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE-BE的值.25.(10分)如图为一个广告牌支架的示意图,其中AB=13m,AD=12m,BD=5m,AC=15m,求图中△ABC的周长和面积.26.(10分)运用乘法公式计算:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3).

参考答案一、选择题(每小题3分,共30分)1、B【分析】在一定条件下,可能发生也可能不发生的事件,称为随机事件.事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定事件.【详解】A.若摸出的4个球全部是红球,则其中一个一定不是绿球,故本选项属于随机事件;B.摸出的4个球其中一个是红球,故本选项属于必然事件;C.若摸出的4个球全部是红球,则不可能摸出一个绿球,故本选项属于随机事件;D.摸出的4个球中不可能没有红球,至少一个红球,故本选项属于不可能事件;故选B.【点睛】本题主要考查了随机事件,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.2、B【分析】根据平方差公式的特点即可求解.【详解】A.=,不符合题意;B.=,符合题意;C.=,不能使用平方差公式,故错误;D.不能使用平方差公式,故错误;故选B.【点睛】此题主要考查平方差公式,解题的关键是熟知平方差公式适用的特点.3、C【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A.是整式的乘法,故A错误;B.没把一个多项式转化成几个整式积的形式,故B错误;C.把一个多项式转化成几个整式积的形式,故C正确;D.没把一个多项式转化成几个整式积的形式,故D错误;故选C.【点睛】此题考查因式分解的意义,解题关键在于掌握运算法则4、D【分析】根据线段垂直平分线的性质即可得出答案.【详解】解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在AC、AB两边垂直平分线的交点处,故选:D.【点睛】本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.5、B【解析】通过几个特殊点就大致知道图像了,P点在AD段时面积为零,在DC段先升,在CB段因为底和高不变所以面积不变,在BA段下降,故选B6、B【分析】利用对顶角的性质、平行线的性质分别进行判断后即可确定正确的选项.【详解】①对顶角相等,正确,是真命题;②在同一平面内,垂直于同一条直线的两直线平行,正确,是真命题;③同位角相等,错误,是假命题;④相等的角是对顶角,错误,是假命题,故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的性质等基础知识,难度较小.7、C【分析】根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.【详解】解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误;B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项错误;C、添加DA=DE无法求出∠DAB=∠EAC,故本选项正确;D、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误.故选C.8、B【分析】根据不等式的性质判断即可.【详解】解:由,不能判断与的大小,A错误;由,可知,B正确;由,可知,∴,C错误;由,可知,D错误.故选:B.【点睛】本题考查了对不等式性质的应用,注意:不等式的性质有①不等式的两边都加上或减去同一个数或整式,不等号的方向不变,②不等式的两边都乘以或除以同一个正数,不等号的方向不变,③不等式的两边都乘以或除以同一个负数,不等号的方向改变.9、B【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项错误;

B、是轴对称图形,故本选项正确;

C、不是轴对称图形,故本选项错误;

D、不是轴对称图形,故本选项错误.

故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10、B【解析】两条平行直线被第三条直线所截,同位角相等,所以①错误;在同一平面内,垂直于同一直线的两条直线互相平行,所以②正确;三角形的三条高中,必有一条在三角形的内部,所以③正确;三角形的三个外角最多只有一个锐角,所以④错误.故选B.二、填空题(每小题3分,共24分)11、m>−1【分析】两方程相加可得x+y=m+1,根据题意得出关于m的不等式,解之可得.【详解】解:,①+②得:3x+3y=3m+3,则x+y=m+1,∵,∴m+1>0,解得:m>−1,故答案为:m>−1.【点睛】本题考查的是解二元一次方程组以及解一元一次不等式,整体求出x+y=m+1是解题的关键.12、±1.【解析】试题分析:∵,∴4的平方根是±1.故答案为±1.考点:平方根.13、【分析】先依据题例用平方差公式展开,再利用乘法分配律交换位置后,相乘进行约分计算即可.【详解】解:=====,故答案为:.【点睛】本题考查运用因式分解对有理数进行简便运算.熟练掌握平方差公式是解题关键.14、2019【分析】将x3+x2-3x+2020进行变形然后代入求解即可.【详解】解:原式=【点睛】本题主要考查了二次根式的计算,根据原式进行变形代入求值是解题的关键.15、③【分析】根据必然事件的概念,逐一判断,即可得到答案.【详解】①射击1次,中靶,是随机事件,不合题意;②打开电视,正在播广告,是随机事件,不合题意;③地球上,太阳东升西落,是必然事件,符合题意.故答案为:③.【点睛】本题主要考查必然事件的概念,掌握必然事件的概念,是解题的关键.16、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.考点:提公因式法和应用公式法因式分解.17、(x-5)(3x-2)【分析】先把代数式进行整理,然后提公因式,即可得到答案.【详解】解:==;故答案为:.【点睛】本题考查了提公因式法分解因式,解题的关键是熟练掌握分解因式的几种方法.18、1【分析】先分析出小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),再根据路程、时间、速度的关系即可求得.【详解】解:通过读图可知:小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),

所以小明回家的速度是每分钟步行10÷10=1(米).

故答案为:1.【点睛】本题主要考查了函数图象,先得出小明家与学校的距离和回家所需要的时间,再求解.三、解答题(共66分)19、(3)D(0,3);E(4,8).(3).【详解】试题分析:(3)先根据勾股定理求出BE的长,进而可得出CE的长,求出E点坐标,在Rt△DCE中,由DE=OD及勾股定理可求出OD的长,进而得出D点坐标.(3)由(3)知D、E的坐标,根据待定系数法即可求得表达式.试题解析:(3)依题意可知,折痕AD是四边形OAED的对称轴,∴在Rt△ABE中,AE=AO=30,AB=8,BE==6,∴CE=4,∴E(4,8).在Rt△DCE中,DC3+CE3=DE3,又∵DE=OD,∴(8-OD)3+43=OD3,∴OD=3,∴D(0,3),综上D点坐标为(0,3)、E点坐标为(4,8).(3)由(3)得:E(4,8).D(0,3),设直线DE的解析式为y=mx+n,∴,解得,∴直线DE的解析式为y=x+3.考点:3.翻折变换(折叠问题);3.坐标与图形性质.20、(1),3;(2)证明见解析;(3)1【分析】(1)根据题意可以把指数式43=64写成对数式;(2)先设logaM=m,logaN=n,根据对数的定义可表示为指数式为:M=am,N=an,计算的结果,同理由所给材料的证明过程可得结论;(3)根据公式:loga(M•N)=logaM+logaN和=logaM−logaN的逆用,将所求式子表示为:log3(2×6÷4),计算可得结论.【详解】解:(1)由题意可得,指数式43=64写成对数式为:3=log464,故答案为:3=log464;(2)设logaM=m,logaN=n,则M=am,N=an,∴==am−n,由对数的定义得m−n=,又∵m−n=logaM−logaN,∴=logaM−logaN(a>0,a≠1,M>0,N>0);(3)log32+log36−log34,=log3(2×6÷4),=log33,=1,故答案为:1.【点睛】本题考查整式的混合运算、对数与指数之间的关系与相互转化的关系,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系.21、(1)(x﹣2)(x﹣4);(2)①(x﹣y+1)(x﹣y+1);②(m+1)2(m﹣1)(m+1).【分析】(1)根据材料1,可对进行x2﹣6x+8进行分解因式;(2)①根据材料2的整体思想,可对(x﹣y)2+4(x﹣y)+1进行分解因式;②根据材料1、2,可对m(m+2)(m2+2m﹣2)﹣1进行分解因式.【详解】解:(1)x2﹣6x+8=(x﹣2)(x﹣4);(2)①令A=x﹣y,则原式=A2+4A+1=(A+1)(A+1),所以(x﹣y)2+4(x﹣y)+1=(x﹣y+1)(x﹣y+1);②令B=m2+2m,则原式=B(B﹣2)﹣1=B2﹣2B﹣1=(B+1)(B﹣1),所以原式=(m2+2m+1)(m2+2m﹣1)=(m+1)2(m﹣1)(m+1).【点睛】本题主要考查因式分解的方法-十字相乘法.22、(1)作图见解析,,,;(2)14【分析】(1)分别找到A、B、C点关于y轴的对称点,顺次连接即可得到,再写出坐标即可;(2)用矩形面积减去三个直角三角形面积即可.【详解】(1)如图,,,(2)【点睛】本题考查网格作图,熟练掌握轴对称的定义是解题的关键.23、(1)m﹣n;(2)(m﹣n)2;(m+n)2﹣4mn;(3)(m﹣n)2=(m+n)2﹣4mn;(4)1.【分析】(1)平均分成后,每个小长方形的长为m,宽为n.由图可知阴影正方形的边长=小长方形的长-宽;(2)第一种方法为:大正方形面积-4个小长方形面积,第二种表示方法为:阴影部分为小正方形的面积;(3)根据(2)中表示的结果可求解;(4)利用(a-b)2=(a+b)2-4ab可求解.【详解】解:(1)图②中的阴影部分的正方形的边长等于m﹣n;故答案为:m﹣n;(2)图②中阴影部分的面积:(m﹣n)2;图②中阴影部分的面积:(m+n)2﹣4mn;故答案为:(m﹣n)2;(m+n)2﹣4mn;(3)根据图②,可得(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系为:(m﹣n)2=(m+n)2﹣4mn;(4)∵a﹣b=6,ab=5,∴(a+b)2=(a﹣b)2+4ab=62+4×5=36+20=1.【点睛】本题考查了完全平方那个公式的几何背景,解决问题的关键是读懂题意,找到所求的量的等量关系.24、(1)67.5;(1)证明见解析;(3)DE-BE=1.【分析】(1)先根据等腰三角形的性质,得出∠A=∠B=45°=∠CDE,再根据BC=BD,可得出∠BDC的度数,然后可得出∠BDE的度数,最后根据三角形外角的性质可得出∠DEC的度数;(1)先根据条件得出∠ACD=∠BDE,BD=AC,再根据ASA判定△ADC≌△BED,即可得到CD=DE;

(3)先根据条件得出∠DCB=∠CDE,进而得到CE=DE,再在DE上取点F,使得FD=BE,进而判定△CDF≌△DBE(SAS),得出CF=DE=CE,再根据CH⊥EF,运用三线合一即可得到FH=HE,最后得出CE-BE=DE-DF=EF=1HE,即可得出结论.【详解】(1)解:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°=∠CDE,又BC=BD,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论