


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.估计的值约为()A.2.73 B.1.73 C.﹣1.73 D.﹣2.732.下列代数式中,属于分式的是()A.-3 B. C. D.3.下列命题中,是真命题的是()A.同位角相等B.全等的两个三角形一定是轴对称C.不相等的角不是内错角D.同旁内角互补,两直线平行4.把式子2x(a﹣2)﹣y(2﹣a)分解因式,结果是()A.(a﹣2)(2x+y) B.(2﹣a)(2x+y)C.(a﹣2)(2x﹣y) D.(2﹣a)(2x﹣y)5.如图,A、C是函数的图象上任意两点,过点A作y轴的垂线,垂足为B,过点C作y轴的垂线,垂足为D.记的面积为,的面积为,则和的大小关系是()A. B.C. D.由A、C两点的位置确定6.如图,在中,点是边的中点,交对角线于点,则等于()A. B. C. D.7.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁8.在平面直角坐标系中,点P(﹣3,7)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如图,AC与BD交于O点,若,用“SAS”证明≌,还需A. B.C. D.10.某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是()A.87 B.87.6 C.87.8 D.8811.已知三角形的三边长为6,8,10,则这个三角形最长边上的高为()A.2.4 B.4.8 C.9.6 D.1012.等腰中,,用尺规作图作出线段BD,则下列结论错误的是()A. B. C. D.的周长二、填空题(每题4分,共24分)13.如图,已知中,,,垂足为点D,CE是AB边上的中线,若,则的度数为____________.14.已知一次函数与的函数图像如图所示,则关于的二元一次方程组的解是______.15.如图,在四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分别以DC,BC,AB为边向外作正方形,它们的面积分别为S1、S2、S1.若S2=64,S1=9,则S1的值为_____.16.已知,则_____________________;17.如图,直线与轴正方向夹角为,点在轴上,点在直线上,均为等边三角形,则的横坐标为__________.18.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿y轴翻折,再向下平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC的顶点C的坐标为____.三、解答题(共78分)19.(8分)快车和慢车都从甲地驶向乙地,两车同时出发行在同一条公路上,途中快车休息1小时后加速行驶比慢车提前0.5小时到达目的地,慢车没有体息整个行驶过程中保持匀速不变.设慢车行驶的时间为x小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米,图中折线OAEC表示y1与x之间的函数关系,线段OD表示y2与x之间的函数关系,请解答下列问题:(1)甲、乙两地相距千米,快车休息前的速度是千米/时、慢车的速度是千米/时;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.20.(8分)先化简:,然后在不等式的非负整数解中选择一个适当的数代入求值.21.(8分)已知,直线AB∥CD.(1)如图1,若点E是AB、CD之间的一点,连接BE.DE得到∠BED.求证:∠BED=∠B+∠D.(1)若直线MN分别与AB、CD交于点E.F.①如图1,∠BEF和∠EFD的平分线交于点G.猜想∠G的度数,并证明你的猜想;②如图3,EG1和EG1为∠BEF内满足∠1=∠1的两条线,分别与∠EFD的平分线交于点G1和G1.求证:∠FG1E+∠G1=180°.22.(10分)八年级学生去距离学校10千米的素质教育基地参加实践活动,上午8点40分一部分学生骑自行车先走;9点整,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.23.(10分)计算与化简求值:(1)(2)(3)化简,并选一个合适的数作为的值代入求值.24.(10分)如图,在中,于D(1)若,求的度数(2)若点E在AB上,EF//AC交AD的延长线于点F求证:AE=FE25.(12分)化简并求值:,其中,且均不为1.26.为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.
参考答案一、选择题(每题4分,共48分)1、B【分析】先求出的范围,即可求出答案.【详解】解:∵1<<2,∴的值约为1.73,故选:B.【点睛】本题考查近似数的确定,熟练掌握四舍五入求近似数的方法是解题的关键.2、C【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:-3;;是整式;符合分式的概念,是分式故选:C【点睛】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.3、D【分析】根据平行线的性质对A进行判断;根据轴对称的定义对B进行判断;根据内错角的定义对C进行判断;根据平行线的判定对D进行判断.【详解】解:A、两直线平行,同位角相等,所以A选项为假命题;B、全等的两个三角形不一定是轴对称的,所以B选项为假命题;C、不相等的角可能为内错角,所以C选项为假命题;D、同旁内角互补,两直线平行,所以D选项为真命题.故选D.考点:命题与定理.4、A【分析】根据提公因式法因式分解即可.【详解】2x(a﹣2)﹣y(2﹣a)=2x(a﹣2)+y(a﹣2)=(a﹣2)(2x+y).故选:A.【点睛】此题考查的是因式分解,掌握用提公因式法因式分解是解决此题的关键.5、C【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=k|.【详解】由题意得:S1=S2=|k|=.故选:C.【点睛】本题主要考查了反比例函数y=中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|,是经常考查的一个知识点;这里体现了数形结合的思想.6、C【分析】由题意根据题意得出△DEF∽△BCF,利用点E是边AD的中点得出答案即可.【详解】解:∵▱ABCD,∴AD∥BC,∴△DEF∽△BCF,∵点E是边AD的中点,∴AE=ED=AD=BC,∴=.故选:C.【点睛】本题主要考查平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF∽△BCF是解题关键.7、A【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选A.【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.8、B【解析】根据各象限内点的坐标特点解答即可.【详解】解:因为点P(﹣3,7)的横坐标是负数,纵坐标是正数,所以点P在平面直角坐标系的第二象限.故选:B.【点睛】此题主要考查了点的坐标,解答本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.9、B【分析】根据全等三角形的判定定理逐个判断即可.【详解】A、根据条件,,不能推出≌,故本选项错误;B、在和中,≌,故本选项正确;C、,,,符合全等三角形的判定定理ASA,不符合全等三角形的判定定理SAS,故本选项错误;D、根据和不能推出≌,故本选项错误;故选B.【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.10、B【分析】根据加权平均数的定义,根据比例即可列式子计算,然后得到答案.【详解】解:根据题意,有:小王的最后得分为:;故选:B.【点睛】本题考查了加权平均数的应用,解题的关键是掌握题意,正确利用比例进行计算.11、B【分析】先根据勾股定理的逆定理判定它是直角三角形,再利用直角三角形的面积作为相等关系求斜边上的高.【详解】解:∵62+12=102,
∴这个三角形是直角三角形,
∴边长为10的边上的高为6×1÷10=4.1.
故选:B.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.12、C【解析】根据作图痕迹发现BD平分∠ABC,然后根据等腰三角形的性质进行判断即可.【详解】解:∵等腰△ABC中,AB=AC,∠A=36°,
∴∠ABC=∠ACB=72°,
由作图痕迹发现BD平分∠ABC,
∴∠A=∠ABD=∠DBC=36°,
∴AD=BD,故A、B正确;
∵AD≠CD,
∴S△ABD=S△BCD错误,故C错误;
△BCD的周长=BC+CD+BD=BC+AC=BC+AB,
故D正确.
故选C.【点睛】本同题考查等腰三角形的性质,能够发现BD是角平分线是解题的关键.二、填空题(每题4分,共24分)13、【分析】本题可利用直角三角形斜边中线等于斜边的一半求证边等,并结合直角互余性质求解对应角度解题即可.【详解】∵∠ACB=,CE是AB边上的中线,∴EA=EC=EB,又∵∠B=,∴∠ACE=∠A=,∵,∴∠DCB=.故.故填:.【点睛】本题考查直角三角形性质,考查“斜中半”定理,角度关系则主要通过直角互余性质求解即可.14、【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解,从而可得答案.【详解】解:∵一次函数和一次函数的图象交点的坐标为∴方程组的解是:.故答案为:.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.掌握以上知识是解题的关键.15、2【分析】由已知可以得到+,代入各字母值计算可以得到解答.【详解】解:如图,过A作AE∥DC交BC于E点,
则由题意可知∠ABC+∠AEB=90°,且BE=AD=BC,AE=DC,∴三角形ABE是直角三角形,∴,即,∴,故答案为2.【点睛】本题考查平行四边形、正方形面积与勾股定理的综合应用,由已知得到三个正方形面积的关系式是解题关键.16、7【解析】把已知条件平方,然后求出所要求式子的值.【详解】∵,∴,∴=9,∴=7.故答案为7.【点睛】此题考查分式的加减法,解题关键在于先平方.17、【分析】分别求出的坐标,得到点的规律,即可求出答案.【详解】设直线交x轴于A,交y轴于B,当x=0时,y=1;当y=0时,x=,∴A(,0),∴B(0,1),∴OA=,OB=1,∵是等边三角形,∴∵∠BOA=,∴OA1=OB1=OA=,A1A2=A1B2=AA1=2,A2A3=A2B3=AA2=4,∴OA1=,OA2=2,OA3=4,∴A1(,0),A2(2,0),A3(4,0),∴的横坐标是.【点睛】此题考查点坐标的规律探究,一次函数的性质,等边三角形的性质,等腰三角形的性质,根据几种图形的性质求出A1,A2,A3的坐标得到点坐标的规律是解题的关键.18、(2,).【分析】据轴对称判断出点C变换后在y轴的右侧,根据平移的距离求出点C变换后的纵坐标,最后写出即可.【详解】∵△ABC是等边三角形,AB=3﹣1=2,∴点C到y轴的距离为1+2×=2,点C到AB的距离为=,∴C(2,+1),把等边△ABC先沿y轴翻折,得C’(-2,+1),再向下平移1个单位得C’’(-2,)故经过一次变换后,横坐标变为相反数,纵坐标减1,故第2020次变换后的三角形在y轴右侧,点C的横坐标为2,纵坐标为+1﹣2020=﹣2019,所以,点C的对应点C'的坐标是(2,﹣2019).故答案为:(2,﹣2019).【点睛】本题考查了坐标与图形变化−平移,等边三角形的性质,读懂题目信息,确定出连续2020次这样的变换得到三角形在y轴右侧是解题的关键.三、解答题(共78分)19、(1)300,75,60;(2)y1=100x﹣150(3≤x≤4.5);(3)点F的坐标为(3.75,225),点F代表的实际意义是在3.75小时时,快车与慢车行驶的路程相等【分析】(1)根据图象可直接得出甲、乙两地的距离;根据图象可得A、B两点坐标,然后利用速度=路程÷时间求解即可;(2)根据快车休息1小时可得点E坐标,根据快车比慢车提前0.5小时到达目的地可得点C坐标,然后利用待定系数法求解即可;(3)易得y2与x之间的函数关系式,然后只要求直线EC与直线OD的交点即得点F坐标,为此只要解由直线EC与直线OD的的解析式组成的方程组即可,进而可得点F的实际意义.【详解】解:(1)甲、乙两地相距300千米,快车休息前的的速度为:150÷2=75千米/小时,慢车的速度为:150÷2.5=60千米/小时.故答案为:300,75,60;(2)由题意可得,点E的横坐标为:2+1=3,则点E的坐标为(3,150),快车从点E到点C用的时间为:300÷60﹣0.5=4.5(小时),则点C的坐标为(4.5,300),设线段EC所表示的y1与x之间的函数表达式是y1=kx+b,把E、C两点代入,得:,解得:,即线段EC所表示的y1与x之间的函数表达式是y1=100x﹣150(3≤x≤4.5);(3)y2与x之间的函数关系式为:,设点F的横坐标为a,则60a=100a﹣150,解得:a=3.75,则60a=225,即点F的坐标为(3.75,225),点F代表的实际意义是在3.75小时时,快车与慢车行驶的路程相等.【点睛】本题是一次函数的应用问题,主要考查了待定系数法求一次函数的解析式、一次函数图象上点的坐标特征和两个函数的交点等知识,属于常考题型,正确读懂图象信息、熟练掌握一次函数的相关知识是解题的关键.20、;2.【解析】先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.【详解】解:原式===的非负整数解有:2,1,0,其中当x取2或1时分母等于0,不符合条件,故x只能取0∴将x=0代入得:原式=2【点睛】本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.21、(1)证明见解析;(1)①∠EGF=90°,证明见解析;②证明见解析.【分析】(1)过点E作EF∥AB,则有∠BEF=∠B根据平行线的性质即可得到结论;
(1)①由(1)中的结论得∠EGF=∠BEG+∠GFD,根据EG、FG分别平分∠BEF和∠EFD,得到∠BEF=1∠BEG,∠EFD=1∠GFD,由于BE∥CF到∠BEF+∠EFD=180°,于是得到1∠BEG+1∠GFD=180°,即可得到结论;
②过点G1作G1H∥AB,由结论可得∠G1=∠1+∠3,由平行线的性质得到∠3=∠G1FD,由于FG1平分∠EFD,求得∠EFG1=∠G1FD=∠3,由于∠1=∠1,于是得到∠G1=∠1+∠EFG1,由三角形外角的性质得到∠EG1G1=∠1+∠EFG1=∠G1,然后根据平角的性质即可得到结论.【详解】(1)证明:如图1过点E作EF∥AB,则有∠BEF=∠B.∵AB∥CD,∴EF∥CD.∴∠FED=∠D.∴∠BEF+∠FED=∠B+∠D.即∠BED=∠B+∠D;(1)①如图1所示,猜想:∠EGF=90°.证明:由(1)中的结论得∠EGF=∠BEG+∠GFD,∵EG.FG分别平分∠BEF和∠EFD,∴∠BEF=1∠BEG,∠EFD=1∠GFD,∵BE∥CF,∴∠BEF+∠EFD=180°,∴1∠BEG+1∠GFD=180°,∴∠BEG+∠GFD=90°,∵∠EGF=∠BEG+∠GFD,∴∠EGF=90°;②证明:如图3,过点G1作G1H∥AB∵AB∥CD∴G1H∥CD∴∠3=∠G1FD由(1)结论可得∠G1=∠1+∠3∵FG1平分∠EFD∴∠EFG1=∠G1FD=∠3∵∠1=∠1∴∠G1=∠1+∠EFG1∵∠EG1G1=∠1+∠EFG1∴∠G1=∠EG1G1∵∠FG1E+∠EG1G1=180°∴∠FG1E+∠G1=180°.【点睛】本题考查平行线的性质,角平分线的性质,三角形外角的性质,熟练掌握平行线的性质定理是解题的关键.22、15千米/小时【分析】求速度,路程已知,根据时间来列等量关系.关键描述语为:“上午8点40分一部分学生骑自行车先走;9点整,其余学生乘汽车出发,结果他们同时到达”;等量关系为:骑自行车同学所用时间乘车同学所用时间=小时,根据等量关系列出方程.【详解】解:设骑车学生的速度为千米/小时,由题意,得.解之得:.经检验是原分式方程的解.答:骑车学生的速度为15千米/小时.【点睛】本题考查由实际问题抽象出分式方程,分析题意,找到关键描述语,得到合适的等量关系是解决问题的关键.23、(1);(2);(3),当a=1时,原式=-1.【分析】(1)根据负指数幂(n为正整数),任何一个数的零指数幂是1(0除外)以及积的乘方即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 期末家庭协议书
- 2025年中国哲学试题及答案
- 2025年红谷滩社区考试题及答案
- 2025年食检专业面试题目及答案
- 2025年妇产科试用期试题及答案
- 2025年二建湖北考试试题及答案
- 2025年外科中医护理试题及答案
- 2025年中医学就业考试题及答案
- 2025年人力资源基础试题及答案
- 2025年深信服python笔试题及答案
- 职业培训学校宣传课件
- 餐饮食堂食品安全法培训
- 2025建筑工程土石方挖掘与运输合同范本
- 2025年智慧农业技术考试试卷及答案
- 网约车考试题库及答案
- 慢阻肺健康宣教
- 小学一年级升二年级暑假数学作业-应用题(178题)(附答案)
- 各项记录填写培训
- 辅音音素教学课件
- 工会维权活动方案
- 2024版辅警劳动合同
评论
0/150
提交评论