广西柳州市柳江区2022-2023学年八年级数学第一学期期末学业质量监测试题含解析_第1页
广西柳州市柳江区2022-2023学年八年级数学第一学期期末学业质量监测试题含解析_第2页
广西柳州市柳江区2022-2023学年八年级数学第一学期期末学业质量监测试题含解析_第3页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别表示下列六个字兴、爱、我、义、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码可能是()A.我爱美 B.兴义游 C.美我兴义 D.爱我兴义2.微信已成为人们的重要交流平台,以下微信表情中,不是轴对称图形的是()A. B. C. D.3.估计的值在()A.3.2和3.3之间 B.3.3和3.4之间 C.3.4和3.5之间 D.3.5和3.6之间4.在平面直角坐标系中,点P(﹣2,3)在第()象限.A.一 B.二 C.三 D.四5.下列说法正确的是()A.(﹣3)2的平方根是3 B.=±4C.1的平方根是1 D.4的算术平方根是26.若是完全平方式,则的值是()A. B. C.+16 D.-167.下列命题是真命题的是()A.中位数就是一组数据中最中间的一个数B.一组数据的众数可以不唯一C.一组数据的标准差就是这组数据的方差的平方根D.已知a、b、c是Rt△ABC的三条边,则a2+b2=c28.如果把分式中的、同时扩大为原来的2倍,那么得到的分式的值()A.不变 B.缩小到原来的C.扩大为原来的2倍 D.扩大为原来的4倍9.下列因式分解结果正确的有()①;②;③;④A.1个 B.2个 C.3个 D.4个10.如果m是的整数部分,则m的值为()A.1 B.2 C.3 D.411.下列各数中,无理数是()A.﹣3 B.0.3 C. D.012.下列四个式子中是分式的是()A. B. C. D.二、填空题(每题4分,共24分)13.三边都不相等的三角形的三边长分别为整数,,,且满足,则第三边的值为________.14.如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A=°.15.请写出一个小于4的无理数:________.16.某销售人员一周的销售业绩如下表所示,这组数据的中位数是__________.17.点A(5,﹣1)关于x轴对称的点的坐标是_____.18.若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝1.三、解答题(共78分)19.(8分)(1)问题解决:如图,在四边形ABCD中,∠BAD=α,∠BCD=180°﹣α,BD平分∠ABC.①如图1,若α=90°,根据教材中一个重要性质直接可得AD=CD,这个性质是;②在图2中,求证:AD=CD;(2)拓展探究:根据(1)的解题经验,请解决如下问题:如图3,在等腰△ABC中,∠BAC=100°,BD平分∠ABC,求证BD+AD=BC.20.(8分)如图,在平面直角坐标系中,一次函数的图象过点A(4,1)与正比例函数()的图象相交于点B(,3),与轴相交于点C.(1)求一次函数和正比例函数的表达式;(2)若点D是点C关于轴的对称点,且过点D的直线DE∥AC交BO于E,求点E的坐标;(3)在坐标轴上是否存在一点,使.若存在请求出点的坐标,若不存在请说明理由.21.(8分)等边△ABC的边BC在射线BD上,动点P在等边△ABC的BC边上(点P与BC不重合),连接AP.(1)如图1,当点P是BC的中点时,过点P作于E,并延长PE至N点,使得.①若,试求出AP的长度;②连接CN,求证.(2)如图2,若点M是△ABC的外角的角平分线上的一点,且,求证:.22.(10分)解答下列各题:(1)计算:.(2)解方程:.23.(10分)先化简,再求值:(2x+1)(2x−1)−(x+1)(3x−2),其中x=−1.24.(10分)建立模型:如图1,等腰Rt△ABC中,∠ABC=90°,CB=BA,直线ED经过点B,过A作AD⊥ED于D,过C作CE⊥ED于E.则易证△ADB≌△BEC.这个模型我们称之为“一线三垂直”.它可以把倾斜的线段AB和直角∠ABC转化为横平竖直的线段和直角,所以在平面直角坐标系中被大量使用.模型应用:(1)如图2,点A(0,4),点B(3,0),△ABC是等腰直角三角形.①若∠ABC=90°,且点C在第一象限,求点C的坐标;②若AB为直角边,求点C的坐标;(2)如图3,长方形MFNO,O为坐标原点,F的坐标为(8,6),M、N分别在坐标轴上,P是线段NF上动点,设PN=n,已知点G在第一象限,且是直线y=2x一6上的一点,若△MPG是以G为直角顶点的等腰直角三角形,请直接写出点G的坐标.25.(12分)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,当△PCD的周长最小时,在图中画出点P的位置,并求点P的坐标.26.解不等式:.

参考答案一、选择题(每题4分,共48分)1、D【分析】将所给整式利用提取公因式法和平方差公式进行因式分解,再与所给的整式与对应的汉字比较,即可得解.【详解】解:∵(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x+y)(x﹣y)(a+b)(a﹣b)∵x﹣y,x+y,a﹣b,a+b四个代数式分别对应:爱、我、兴、义∴结果呈现的密码可能是爱我兴义.故选:D.【点睛】本题主要考查因式分解,掌握提取公因式和因式分解的方法是解题的关键.2、C【解析】根据轴对称的概念作答:如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【详解】A、是轴对称图形,故本选项不符合题意;

B、是轴对称图形,故本选项不符合题意;

C、不是轴对称图形,故本选项符合题意;

D、是轴对称图形,故本选项不符合题意.

故选:C.【点睛】本题主要考查了轴对称的概念,解题关键是掌握轴对称的概念并能找到对称轴.3、C【分析】利用平方法即可估计,得出答案.【详解】解:∵3.52=12.25,3.42=11.56,而12.25>11.6>11.56,∴,故选:C.【点睛】本题考查无理数的估算,掌握算术平方根的意义是正确解答的关键.4、B【分析】根据各象限内点的坐标特征解答.【详解】点P(-2,3)在第二象限.故选B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5、D【解析】根据平方根和算术平方根的定义解答即可.【详解】A、(﹣3)2的平方根是±3,故该项错误;B、,故该项错误;C、1的平方根是±1,故该项错误;D、4的算术平方根是2,故该项正确.故选D.【点睛】本题考查了平方根、算术平方根的定义,解决本题的关键是熟记平方根、算术平方根的定义.6、B【分析】根据完全平方公式:,即可得出结论.【详解】解:∵是完全平方式,∴解得:故选B.【点睛】此题考查的是根据完全平方式,求一次项中的参数,掌握两个完全平方公式的特征是解决此题的关键.7、B【分析】正确的命题是真命题,根据定义判断即可.【详解】解:A、中位数就是一组数据中最中间的一个数或着是中间两个数的平均数,故错误;B、一组数据的众数可以不唯一,故正确;C、一组数据的标准差是这组数据的方差的算术平方根,故此选项错误;D、已知a、b、c是Rt△ABC的三条边,当∠C=90°时,则a2+b2=c2,故此选项错误;故选:B.【点睛】此题考查真命题的定义,掌握定义,准确理解各事件的正确与否是解题的关键.8、B【分析】根据分式的基本性质即可求出答案.【详解】解:;∴得到的分式的值缩小到原来的;故选:B.【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.9、A【分析】根据提公因式法和公式法因式分解即可.【详解】①,故①错误;②,故②正确;③,故③错误;④,故④错误.综上:因式分解结果正确的有1个故选A.【点睛】此题考查的是因式分解,掌握提公因式法和公式法因式分解是解决此题的关键,需要注意的是因式分解要彻底.10、C【分析】找到所求的无理数在哪两个和它接近的整数之间,即可得出所求的无理数的整数部分.【详解】解:∵9<15<16,∴3<<4,∴m=3,故选:C.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.11、C【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,逐一判断即可得答案.【详解】A.﹣3是整数,属于有理数,故该选项不符合题意,B.0.3是有限小数,属于有理数,故该选项不符合题意,C.是无理数,故该选项符合题意,D.0是整数,属于有理数,故该选项不符合题意.故选:C.【点睛】此题主要考查了无理数的定义,无限不循环小数为无理数.如π、8080080008…(每两个8之间依次多1个0)等形式,注意带根号的要开不尽方才是无理数.12、D【分析】根据分母中含有字母的是分式来进行判断即可.【详解】,,分母中不含字母,不是分式;分母中含有字母,是分式;故选:D.【点睛】本题主要考查分式,掌握分式的概念是解题的关键,判断一个代数式是分式还是整式的方法:分母中含有字母的是分式,分母中不含字母的是整式.二、填空题(每题4分,共24分)13、1【分析】由题意利用配方法和非负数的性质求得a、b的值,再根据三角形的三边关系定理求出第三边的值.【详解】解:∵,∴,∴,解得,∵1<c<5,三边都不相等∴c=1,即c的长为1.故答案为:1.【点睛】本题考查配方法的应用和三角形的三边关系以及非负数的性质,熟练掌握完全平方公式是解本题的关键.14、1.【解析】试题分析:∵在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,∴∠DBE=∠ABC=(180°﹣31°﹣∠A)=(149°﹣∠A),∵DE垂直平分BC,∴BD=DC,∴∠DBE=∠C,∴∠DBE=∠ABC=(149°﹣∠A)=∠C=31°,∴∠A=1°.故答案为1.考点:线段垂直平分线的性质.15、答案不唯一如,等【分析】开放性的命题,答案不唯一,写出一个小于4的无理数即可.【详解】开放性的命题,答案不唯一,如等.故答案为不唯一,如等.【点睛】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查了算术平方根.16、1【分析】将数据从小到大排列,然后根据中位数的定义求解.【详解】解:将数据从小到大排列为:40,70,70,1,100,150,200,∴这组数据的中位数是1,故答案为:1.【点睛】本题考查中位数的求法:给定n个数据,按从小到大(或从大到小)排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,一定存在中位数,但中位数不一定是这组数据里的数.17、(5,1).【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点A(5,﹣1)关于x轴对称的点的坐标是(5,1).故答案为:(5,1).【点睛】此题考查的是求一个点关于x轴对称点的坐标,掌握关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数是解决此题的关键.18、14【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=ab=×6×8=14cm1,故答案为14.三、解答题(共78分)19、(1)①角平分线上的点到角的两边距离相等;②见解析;(2)见解析.【分析】(1)①根据角平分线的性质定理即可解决问题;②如图2中,作DE⊥BA于E,DF⊥BC于F.只要证明△DEA≌△DFC即可解决问题;(2)如图3中,在BC时截取BK=BD,BT=BA,连接DK.首先证明DK=CK,再证明△DBA≌△DBT,推出AD=DT,∠A=∠BTD=100°,推出∠DTK=∠DKT=80°,推出DT=DK=CK,由此即可解决问题;【详解】(1)①根据角平分线的性质定理可知AD=CD.所以这个性质是角平分线上的点到角的两边距离相等.故答案为:角平分线上的点到角的两边距离相等.②如图2中,作DE⊥BA于E,DF⊥BC于F.∵BD平分∠EBF,DE⊥BE,DF⊥BF,∴DE=DF,∵∠BAD+∠C=180°,∠BAD+∠EAD=180°,∴∠EAD=∠C,∵∠E=∠DFC=90°,∴△DEA≌△DFC,∴DA=DC.(2)如图3中,在BC上截取BK=BD,BT=BA,连接DK.∵AB=AC,∠A=100°,∴∠ABC=∠C=40°,∵BD平分∠ABC,∴∠DBK=∠ABC=20°,∵BD=BK,∴∠BKD=∠BDK=80°,∵∠BKD=∠C+∠KDC,∴∠KDC=∠C=40°,∴DK=CK,∵BD=BD,BA=BT,∠DBA=∠DBT,∴△DBA≌△DBT,∴AD=DT,∠A=∠BTD=100°,∴∠DTK=∠DKT=80°,∴DT=DK=CK,∴BD+AD=BK+CK=BC.【点睛】本题考查三角形综合题、等腰三角形的判定和性质、全等三角形的判定和性质等知识,具体的关键是学会添加常用辅助线,构造全等三角形解决问题.20、(1)一次函数表达式为:;正比例函数的表达式为:;(2)E(-2,-3);(3)P点坐标为(,0)或(,0)或(0,2)或(0,-2).【分析】(1)将点A坐标代入可求出一次函数解析式,然后可求点B坐标,将点B坐标代入即可求出正比例函数的解析式;(2)首先求出点D坐标,根据DE∥AC设直线DE解析式为:,代入点D坐标即可求出直线DE解析式,联立直线DE解析式和正比例函数解析式即可求出点E的坐标;(3)首先求出△ABO的面积,然后分点P在x轴和点P在y轴两种情况讨论,设出点P坐标,根据列出方程求解即可.【详解】解:(1)将点A(4,1)代入得,解得:b=5,∴一次函数解析式为:,当y=3时,即,解得:,∴B(2,3),将B(2,3)代入得:,解得:,∴正比例函数的表达式为:;(2)∵一次函数解析式为:,∴C(0,5),∴D(0,-5),∵DE∥AC,∴设直线DE解析式为:,将点D代入得:,∴直线DE解析式为:,联立,解得:,∴E(-2,-3);(3)设直线与x轴交于点F,令y=0,解得:x=5,∴F(5,0),∵A(4,1),B(2,3),∴,当点P在x轴上时,设P点坐标为(m,0),由题意得:,解得:,∴P点坐标为(,0)或(,0);当点P在y轴上时,设P点坐标为(0,n),由题意得:,解得:,∴P点坐标为(0,2)或(0,-2),综上所示:P点坐标为(,0)或(,0)或(0,2)或(0,-2).【点睛】本题考查了一次函数图象上点的坐标特征、待定系数法求一次函数解析式、一次函数的性质以及一次函数图象交点的求法,解题的关键是:(1)根据点的坐标,利用待定系数法求出函数解析式;(2)利用平行直线的系数k相等求出直线DE解析式;(3)求出△ABO的面积,利用方程思想和分类讨论思想解答.21、(1)①AP;②证明见解析;(2)证明见解析.【分析】(1)①根据点P是BC的中点,利用等腰三角形三线合一的性质得AP⊥BC,再利用勾股定理即可求得答案;②根据轴对称的性质,证得∠NCE=∠PCE=,从而证得结论;(2)作∠CBF=60°,BF与MC的延长线相交于点F,连接PF,证明△BFC是等边三角形,证得△ABP△FBP,PM=PF,∠PMC=∠PFC,根据三角形外角的性质可得结论.【详解】(1)①在等边△ABC中,∵点P是BC的中点,,∴AP⊥BC,,∴AP=;②∵且,∴点N与点P关于直线AC对称,∴∠NCE=∠PCE=,∴∠NCD=180∠NCE∠PCE=,∴∠NCD=∠B=,∴;(2)作∠CBF=60°,BF与MC的延长线相交于点F,连接PF,如图:∵△ABC是等边三角形,

∴∠ABC=∠ACB=60,

∴∠ACD=120,

∵CM平分∠ACD,

∴∠DCM=∠BCF=60,

∵∠CBF=60,

∴∠FBC=∠BCF=∠BFC=60,

∴△BFC是等边三角形,∵△ABC和△BFC都是等边三角形,

∴AB=BC=BF,

在△ABP和△FBP中,,∴△ABP△FBP,∴AP=PF,∠BAP=∠BFP,

∵AP=PM,

∴PM=PF,

∴∠PMC=∠PFC,∵∠MCD=∠PMC+∠CPM=60,

∠BFC=∠BFP+∠PFC=60,

∴∠CPM=∠BFP=∠BAP,

∵∠APC=∠ABC+∠BAP=∠APM+∠CPM,

∴∠APM=60.【点睛】本题是三角形综合题目,考查了等边三角形的性质和判定,全等三角形的判定与性质,三角形的外角性质等知识;熟练掌握等边三角形的性质,通过作辅助线构造三角形全等是解本题的关键.22、(1);(2)【分析】(1)利用二次根式的乘法法则运算;(2)先去分母得到,然后解整式方程后进行检验确定原方程的解.【详解】解:(1)原式.(2),解得,经检验,原方程的解为.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解分式方程.23、(1);3【分析】利用平方差公式以及多项式乘多项式展开后,再合并同类项,代入x=−1即可求解.【详解】,当时,原式.【点睛】本题主要考查了整式的混合运算,关键是掌握整式乘法的计算法则,正确把式子化简.24、(1)①(7,3);②(7,3)、(4,7)、(-4,1)、(-1,-3);(2)(4,2)、.【分析】(1)①过C作CD垂直于x轴构造“一线三垂直”,再根据全等三角形的性质求解即可;②点C有四处,分别作出图形,根据“一线三垂直”或对称求解即可;(2)当点G为直角顶点时,分点G在矩形MFNO的内部与外部两种情况构造“一线三垂直”求解即可.【详解】(1)①如图,过C作CD垂直于x轴,根据“一线三垂直”可得△AOB≌△BDC,∴AO=BD,OB=CD,∵点A(0,4),点B(3,0),∴AO=4,OB=3,∴OD=3+4=7,∴点C的坐标为(7,3);②如图,若AB为直角边,点C的位置可有4处,a、若点C在①的位置处,则点C的坐标为(7,3);b、若点C在的位置处,同理可得,则点的坐标为(4,7);c、若点C在的位置处,则、关于点A对称,∵点A(0,4),点(4,7),∴点的坐标为(-4,1);d、若点C在的位置处,则、C关于点B对称,∵点B(3,0),点C(7,3),∴点的坐标为(-1,-3);综上,点C的坐标为(7,3)、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论