安徽省濉溪县2022-2023学年八年级数学第一学期期末统考试题含解析_第1页
安徽省濉溪县2022-2023学年八年级数学第一学期期末统考试题含解析_第2页
安徽省濉溪县2022-2023学年八年级数学第一学期期末统考试题含解析_第3页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(2,﹣3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,3)2.函数y=3x+1的图象一定经过点()A.(3,5) B.(-2,3) C.(2,5) D.(0,1)3.直线y=ax+b(a<0,b>0)不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.直角三角形的两条边长分别是5和12,它的斜边长为()A.13 B. C.13或12 D.13或5.已知直线y=2x与y=﹣x+b的交点(﹣1,a),则方程组的解为()A. B. C. D.6.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A. B. C. D.7.下列图形是中心对称图形的是()A. B.C. D.8.中、、的对边分别是、、,下列命题为真命题的()A.如果,则是直角三角形B.如果,则是直角三角形C.如果,则是直角三角形D.如果,则是直角三角形9.已知是多项式的一个因式,则可为()A. B. C. D.10.一个长方形的面积是,且长为,则这个长方形的宽为()A. B. C. D.11.如图,在中,尺规作图如下:在射线、上,分别截取、,使;分别以点和点为圆心、大于的长为半径作弧,两弧相交于点;作射线,连结、.下列结论不一定成立的是()A. B. C. D.12.某校学生会对学生上网的情况作了调查,随机抽取了若干名学生,按“天天上网、只在周末上网、偶尔上网、从不上网”四项标准统计,绘制了如下两幅统计图,根据图中所给信息,有下列判断:①本次调查一共抽取了200名学生;②在被抽查的学生中,“从不上网”的学生有10人;③在本次调查中“天天上网”的扇形的圆心角为30°.其中正确的判断有()A.0个 B.1个 C.2个 D.3个二、填空题(每题4分,共24分)13.观察探索:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1(x﹣1)(x4+x3+x2+x+1)=x5﹣1根据规律填空:(x﹣1)(xn+xn﹣1+…+x+1)=__.(n为正整数)14.已知点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是__________。15.若代数式x2+kx+25是一个完全平方式,则k=_____.16.如果分式的值为零,那么x等于____________17.计算:=_________.18.计算:=____________.三、解答题(共78分)19.(8分)如图,直角坐标系中,点A的坐标为(3,0),以线段OA为边在第四象限内作等边△AOB,点C为轴正半轴上一动点(OC>3),连结BC,以线段BC为边在第四象限内作等边△CBD,直线DA交轴于点E.(1)证明∠ACB=∠ADB;(2)若以A,E,C为顶点的三角形是等腰三角形,求此时C点的坐标;(3)随着点C位置的变化,的值是否会发生变化?若没有变化,求出这个值;若有变化,说明理由.20.(8分)如图,在平面直角坐标系中,(1)作出关于轴对称的,并写出三个顶点的坐标;(2)请计算的面积;21.(8分)如图,已知AC⊥BC,BD⊥AD,AD与BC交于点O,AC=BD.求证:△OAB是等腰三角形.22.(10分)先化简再求值:•,其中x=﹣.23.(10分)老师在黑板上写出了一个分式的计算题,随后用手捂住了一部分,如下图所示:(1)求所捂部分表示的代数式;(2)所捂部分代数式的值能等于-1吗?为什么?24.(10分)解下列不等式(组):(1)(2).25.(12分)如图,在平面直角坐标系中,点O为坐标原点,点A(0,3)与点B关于x轴对称,点C(n,0)为x轴的正半轴上一动点.以AC为边作等腰直角三角形ACD,∠ACD=90°,点D在第一象限内.连接BD,交x轴于点F.(1)如果∠OAC=38°,求∠DCF的度数;(2)用含n的式子表示点D的坐标;(3)在点C运动的过程中,判断OF的长是否发生变化?若不变求出其值,若变化请说明理由.26.谁更合理?某种牙膏上部圆的直径为2.6cm,下部底边的长为4cm,如图,现要制作长方体的牙膏盒,牙膏盒底面是正方形,在手工课上,小明、小亮、小丽、小芳制作的牙膏盒的高度都一样,且高度符合要求.不同的是底面正方形的边长,他们制作的边长如下表:制作者小明小亮小丽小芳正方形的边长2cm2.6cm3cm3.4cm(1)这4位同学制作的盒子都能装下这种牙膏吗?()(2)若你是牙膏厂的厂长,从节约材料又方便取放牙膏的角度来看,你认为谁的制作更合理?并说明理由.

参考答案一、选择题(每题4分,共48分)1、C【解析】根据:关于x轴对称点的坐标特点:横坐标相同,纵坐标互为相反数;可得.【详解】解:∵关于x轴对称点的坐标特点:横坐标相同,纵坐标互为相反数,∴点P(﹣2,3)关于x轴的对称点坐标是(﹣2,﹣3),故答选:C.【点睛】关于x轴对称点的坐标特点:横坐标相同,纵坐标互为相反数;2、D【分析】根据一次函数图象上点的坐标特点把各点分别代入函数解析式即可.【详解】A.∵当x=3时,,∴(3,5)不在函数图像上;B.∵当x=-2时,,∴(-2,3)不在函数图像上;C.∵当x=2时,,∴(2,5)不在函数图像上;D.∵当x=0时,,∴(0,1)在函数图像上.故选:D.【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.3、C【分析】先根据一次函数的图象与系数的关系得出直线y=ax+b(a<0,b>0)所经过的象限,故可得出结论.【详解】∵直线y=ax+b中,a<0,b>0,∴直线y=ax+b经过一、二、四象限,∴不经过第三象限.故选:C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象经过一、二、四象限.4、A【分析】直接利用勾股定理即可解出斜边的长.【详解】解:由题意得:斜边长=,故选:A.【点睛】本题主要考查勾股定理,掌握勾股定理的基本运用是解答本题的关键.5、D【分析】根据一次函数图象上点的坐标特征确定两直线的交点坐标,然后根据函数图象交点坐标为两函数解析式组成的方程组的解选择答案.【详解】解:把(﹣1,a)代入y=2x得a=﹣2,则直线y=2x与y=﹣x+b的交点为(﹣1,﹣2),则方程组的解为.故选D.【点睛】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.6、B【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴因此.【详解】A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.【点睛】考核知识点:轴对称图形识别.7、B【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】解:A、不是中心对称图形,不符合题意,故选项A错误;B、是中心对称图形,符合题意,故选项B正确;C、不是中心对称图形,不符合题意,故选项C错误;D、不是中心对称图形,符合题意,故选项D错误;故选B.【点睛】本题主要考查了中心对称图形的概念,掌握中心对称图形的概念是解题的关键.8、D【分析】根据三角形内角和可判断A和B,根据勾股定理逆定理可判断C和D.【详解】解:A、∵∠A=2∠B=3∠C,∴,,∵∠A+∠B+∠C=180°,∴,∴∠A≈98°,故不符合题意;B、如果∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠C==75°,故不符合题意;C、如果a:b:c=1:2:2,∵12+22≠22,∴不是直角三角形,故不符合题意;D、如果a:b;c=3:4:,∵,∴△ABC是直角三角形,符合题意;故选:D.【点睛】本题主要考查命题与定理,三角形的内角和以及勾股定理的逆定理,解题的关键是熟练掌握勾股定理的逆定理和直角三角形的判定.9、D【分析】所求的式子的二次项系数是2,因式(的一次项系数是1,则另一个因式的一次项系数一定是2,利用待定系数法,就可以求出另一个因式.【详解】设多项式的另一个因式为:.则.

∴,,解得:,.故选:D.【点睛】本题主要考查的是因式分解的意义,确定多项式的另一个因式是解题的关键.10、A【分析】根据长方形的宽=长方形的面积÷长方形的长即可列出算式,再根据多项式除以单项式的法则计算即可.【详解】解:这个长方形的宽=.故选:A.【点睛】本题考查了多项式除以单项式的实际应用,属于基础题型,正确理解题意、熟练掌握运算法则是解题的关键.11、A【分析】根据题意可利用SSS判定△OEC≌△ODC,然后根据全等三角形的性质判断即可.【详解】解:根据题意,得:OE=OD,CE=CD,OC=OC,∴△OEC≌△ODC(SSS),∴,,∴B、C、D三项是正确的,而不一定成立.故选:A.【点睛】本题考查的是角平分线的尺规作图和全等三角形的判定和性质,属于基本题型,熟练掌握基本知识是关键.12、C【分析】结合扇形统计图和条形统计图中“只在周末上网”是120人占60%,可以求得全部人数;再利用“从不上网”的占比得到人数;“天天上网”的圆心角度数是360×10%得到.【详解】因为“只在周末上网”是120人占60%,所以总学生人数为120÷60%=200名,①正确;因为“从不上网”的占比为:1-25%-10%-60%=5%,所以“从不上网”的人数是200×5%=10人,②正确;“天天上网”的圆心角度数:360°×10%=36°,③错误.故选C.【点睛】考查学生对扇形统计图和条形统计图的认识,根据统计图的数据结合起来求相关的人数和占比,学生熟练从两种统计图中提取有用的数据是本题解题的关键.二、填空题(每题4分,共24分)13、xn+1﹣1.【分析】观察算式,得到规律,直接利用规律填空即可.【详解】根据规律填空:(x﹣1)(xn+xn﹣1+…+x+1)=xn+1﹣1.故答案为:xn+1﹣1.【点睛】本题考查平方差公式、多项式乘多项式、规律问题等知识,解题的关键是学会或转化的思想思考问题,学会从特殊到一般的探究规律的方法.14、a<b【分析】先把点M(-1,a)和点N(-2,b)代入一次函数y=-2x+1,求出a,b的值,再比较出其大小即可.【详解】∵点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,∴a=(-2)×(-1)+1=3,b=(-2)×(-2)+1=5,3<5,∴a<b.故答案为:a<b.【点睛】本题考查的一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.15、.【分析】利用完全平方公式的结构特征判断即可得到k的值.【详解】解:∵是一个完全平方式,∴,故答案为:.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16、-1【解析】根据分式的值为0,分子为0,分母不为0,由此可得且x-1≠0,解得x=-1.故答案为-1.17、【分析】根据同分母分式的加减运算法则计算即可.【详解】,

故答案为:.【点睛】本题考查分式的减法运算,熟记运算法则是解题关键.18、【分析】按照分式的乘方运算法则即可得到答案.【详解】解:故答案为:.【点睛】本题考查的是分式的乘方,熟知分式的乘方是关键,结果的符号要注意好.三、解答题(共78分)19、(1)见解析;(2)C点的坐标为(9,0);(3)的值不变,【分析】(1)由△AOB和△CBD是等边三角形得到条件,判断△OBC≌△ABD,即可证得∠ACB=∠ADB;(2)先判断△AEC的腰和底边的位置,利用角的和差关系可证得∠OEA=,AE和AC是等腰三角形的腰,利用直角三角形中,所对的边是斜边的一半可求得AE的长度,因此OC=OA+AC,即可求得点C的坐标;(3)利用角的和差关系可求出∠OEA=,再根据直角三角形中,所对的边是斜边的一半即可证明.【详解】解:(1)∵△AOB和△CBD是等边三角形∴OB=AB,BC=BD,∠OBA=∠CBD=,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD∴在△OBC与△ABD中,OB=AB,∠OBC=∠ABD,BC=BD∴△OBC≌△ABD(SAS)∴∠OCB=∠ADB即∠ACB=∠ADB(2)∵△OBC≌△ABD∴∠BOC=∠BAD=又∵∠OAB=∴∠OAE==,∴∠EAC=,∠OEA=,∴在以A,E,C为顶点的等腰三角形中AE和AC是腰.∵在Rt△AOE中,OA=3,∠OEA=∴AE=6∴AC=AE=6∴OC=3+6=9∴以A,E,C为顶点的三角形是等腰三角形时,C点的坐标为(9,0)(3)的值不变.理由:由(2)得∠OAE=-∠OAB-∠BAD=∴∠OEA=∴在Rt△AOE中,EA=2OA∴=.【点睛】本题主要考查了全等三角形的性质以及判定定理,平面直角坐标系,含角直角三角形的性质,等腰三角形的性质,等边三角形的性质,灵活运用全等三角形的判定定理寻求全等三角形的判定条件证明三角形全等是解题的关键.20、(1)见解析;;(2)1.【分析】(1)分别找到点A、B、C的关于y轴的对称点A1、B1、C1,连接A1B1,A1C1,B1C1,即可画出,然后根据关于y轴对称的两点坐标关系:横坐标互为相反数,纵坐标相等,即可得出结论;(2)用一个长方形将△ABC框住,然后用长方形的面积减去三个直角三角形的面积即可得出结论.【详解】(1)根据题意,分别找到点A、B、C的关于y轴的对称点A1、B1、C1,连接A1B1,A1C1,B1C1,如图所示:即为所求.∵点A的坐标为(0,-2),点B的坐标为(2,-4),点C的坐标为(4,-1)∴;(2)用一个长方形将框住,如上图所示,∴的面积为:;【点睛】此题考查的是画关于y轴对称的图形、求关于y轴对称的点的坐标和求三角形的面积,掌握关于y轴对称的两点坐标关系:横坐标互为相反数,纵坐标相等和用一个长方形将△ABC框住,△ABC的面积等于长方形的面积减去三个直角三角形的面积是解决此题的关键.21、见解析【分析】利用HL定理得出△ABD≌△BAC即可得出∠ABC=∠BAD,再利用等腰三角形的判定得出即可.【详解】证明:∵AC⊥BC,BD⊥AD,∴∠ADB=∠ACB=90°,在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL),∴∠ABC=∠BAD,∴△OAB是等腰三角形【点睛】本题主要考查了全等三角形的判定与性质以及等腰三角形的判定,根据已知得出Rt△ABD≌Rt△BAC是解题关键.22、﹣,-1【分析】首先统一成乘法,然后再把分子分母分解因式,约分后相乘即可得到化简结果,再将值代入即可得出答案.【详解】解:原式=,=﹣,当x=﹣时,原式=﹣=﹣1,故答案为:﹣;-1.【点睛】本题考查了分式的化简求值,公式法因式分解,约分的性质应用,注意约分化成最简形式.23、(1);(2)不能,理由见解析.【分析】(1)根据分式运算的逆运算,表达出所捂部分,再化简即可;(2)令=-1,解分式方程即可,再检验所得的x的值是否使原代数式有意义.【详解】解:(1)原式====,∴所捂部分的代数式是.(2)由题意得:=-1经检验是原分式方程的解.当时,分式没有意义,所以原代数式的值不能等于-1.【点睛】本题考查了分式的化简求值问题,解题的关键是逆向表达出所捂部分,熟练掌握分式运算的法则.24、(1)x<-1;(2)x≤-3.【分析】(1)由移项,合并,系数化为1,即可得到答案;(2)先分别求出每个不等式的解集,然后取解集的公共部分,即可得到不等式组的解集.【详解】解:(1),∴,∴,∴;(2),解不等式①,得:;解不等式②,得:;∴不等式组的解集为:.【点睛】本题考查了解一元一次不等式组,解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤.25、(1)18°;(2)点D的坐标(n+1,n);(1)OF的长不会变化,值为1.【分析】(1)根据同角的余角相等可得∠DCF=∠OAC,进而可得结果;(2)作DH⊥x轴于点H,如图1,则可根据AAS证明△AOC≌△CHD,于是可得OC=DH,AO=CH,进而可得结果;(1)方法一:由轴对称的性质可得AC=BC,于是可得AC=BC=DC,进一步即得∠BAC=∠ABC,∠CBD=∠CDB,而∠ACB+∠DCB=270°,则可根据三角形的内角和定理推出∠ABC+∠CBD=45°,进一步即得△OBF是等腰直角三角形,于是可得OB=OF,进而可得结论;方法2:如图2,连接AF交CD于点M,由轴对称的性质可得AC=BC,AF=BF,进一步即可根据等腰三角形的性质以及角的和差得出∠CAF=∠CBF,易得BC=DC,则有∠CBF=∠CDF,可得∠CAF=∠CDF,然后根据三角形的内角和定理可得∠AFD=∠ACD=90°,即得△AFB是等腰直角三角形,然后根据等腰直角三角形的性质可推出OF=OA,问题即得解决.【详解】解:(1)∵∠AOC=90°,∴∠OAC+∠ACO=90°.∵∠ACD=90°,∴∠DCF+∠ACO=90°,∴∠DCF=∠OAC,∵∠OAC=18°,∴∠DCF=18°;(2)过点D作DH⊥x轴于点H,如图1,则∠AOC=∠CHD=90°,∵△ACD是等腰直角三角形,∠ACD=90°,∴AC=CD,又∵∠OAC=∠DCF,∴△AOC≌△CHD(AAS),∴OC=DH=n,AO=CH=1,∴点D的坐标为(n+1,n);(1)不会变化.方法一:∵点A(0,1)与点B关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论