版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年辽宁省阜新市某学校数学高职单招试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.下列各组数中成等比数列的是()A.
B.
C.4,8,12
D.
2.若实数a,b满足a+b=2,则3a+3b的最小值是()A.18
B.6
C.
D.
3.设集合U={1,2,3,4,5,6},M={1,3,5},则C∪M=()A.{2,4,6}B.{1,3,5}C.{1,2,4}D.U
4.若不等式|ax+2|<6的解集是{x|-1<x<2},则实数a等于()A.8B.2C.-4D.-8
5.正方形ABCD的边长为12,PA丄平面ABCD,PA=12,则点P到对角线BD的距离为()A.12
B.12
C.6
D.6
6.己知向量a
=(2,1),b
=(-1,2),则a,b之间的位置关系为()A.平行B.不平行也不垂直C.垂直D.以上都不对
7.A.{1,0}B.{1,2}C.{1}D.{-1,1,0}
8.下列函数中,在其定义域内既是偶函数,又在(-∞,0)上单调递增的函数是()A.f(x)=x2
B.f(x)=2|x|
C.f(x)=log21/|x|
D.f(x)=sin2x
9.函数的定义域是()A.(-1,1)B.[0,1]C.[-1,1)D.(-1,1]
10.下列函数中,在区间(0,)上是减函数的是()A.y=sinxB.y=cosxC.y=xD.y=lgx
二、填空题(10题)11.
12.若lgx=-1,则x=______.
13.
14.秦九昭是我国南宋时期的数学家,他在所著的《数学九章》中提出的多项式求值的秦九昭算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九昭算法求某多项式值的一个实例,若输入n,x的值分别为3,4,则输出v的值为________.
15.已知一个正四棱柱的底面积为16,高为3,则该正四棱柱外接球的表面积为_____.
16.
17.
18.设平面向量a=(2,sinα),b=(cosα,1/6),且a//b,则sin2α的值是_____.
19.设AB是异面直线a,b的公垂线段,已知AB=2,a与b所成角为30°,在a上取线段AP=4,则点P到直线b的距离为_____.
20.已知向量a=(1,-1),b(2,x).若A×b=1,则x=______.
三、计算题(5题)21.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
22.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
23.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。
24.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
25.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
四、证明题(5题)26.己知sin(θ+α)=sin(θ+β),求证:
27.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
28.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.
29.△ABC的三边分别为a,b,c,为且,求证∠C=
30.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.
五、简答题(5题)31.已知抛物线y2=4x与直线y=2x+b相交与A,B两点,弦长为,求b的值。
32.证明:函数是奇函数
33.已知等差数列的前n项和是求:(1)通项公式(2)a1+a3+a5+…+a25的值
34.化简a2sin(-1350°)+b2tan405°-(a-b)2cot765°-2abcos(-1080°)
35.设函数是奇函数(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)当x<0时,判断f(x)的单调性并加以证明.
六、综合题(5题)36.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
37.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
38.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.
39.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
40.
参考答案
1.B由等比数列的定义可知,B数列元素之间比例恒定,所以是等比数列。
2.B不等式求最值.3a+3b≥2
3.A集合补集的计算.C∪M={2,4,6}.
4.C
5.D
6.C
7.A
8.C函数的奇偶性,单调性.函数f(x)=x2是偶函数,但在区间(-∞,0)上单调递减,不合题意;函数f(x)=2|x|是偶函数,但在区间(-∞,0)上单调递减,不合题意;函数f(x)=㏒21/|x|是偶函数,且在区间(-∞,0)上单调递增,符合题意;函数f(x)=sin2x是奇函数,不合题意.
9.C由题可知,x+1>=0,1-x>0,因此定义域为C。
10.B,故在(0,π/2)是减函数。
11.-1
12.1/10对数的运算.x=10-1=1/10
13.-1
14.100程序框图的运算.初始值n=3,x=4,程序运行过程如下表所示:v=1,i=2,v=1×4+2=6,i=1,v=6×4+l=25,i=0,v=25×4+0=100,i=-1跳出循环,输出v的值为100.
15.41π,由题可知,底面边长为4,底面对角线为,外接球的直径即由高和底面对角线组成的矩形的对角线,所以外接球的直径为,外接球的表面积为。
16.λ=1,μ=4
17.0
18.2/3平面向量的线性运算,三角函数恒等变换.因为a//b,所以2x1/6-sinαcosα=0即sinαcosα=1/3.所以sin2α=2sinαcosα=2/3.
19.
,以直线b和A作平面,作P在该平面上的垂点D,作DC垂直b于C,则有PD=,BD=4,DC=2,因此PC=,(PC为垂直于b的直线).
20.1平面向量的线性运算.由题得A×b=1×2+(-1)×x=2-x=1,x=1。
21.
22.
23.
24.
25.
26.
27.
∴PD//平面ACE.
28.
29.
30.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即
31.
32.证明:∵∴则,此函数为奇函数
33.
34.原式=
35.
∴
∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴
∴得0<b<∵b∈Z∴b=1∴(2)设-1<<<0∵
∴
若时
故当X<-1时为增函数;当-1≤X<0为减函数
36.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上,将a=b或a=-b代入直线方程得:a=4或a=1当a=4时,b
=4,此时r=4,圆的方程为(x-4)2
+(y-4)2=16当a=1时,b
=-1,此时r=1,圆的方程为(x-1)2
+(y+1)2=1
37.解:(1)直线l过A(0,2),B(-2,-2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学生廉政团日活动
- 中国劳动关系学院《人力资源管理概论》2022-2023学年第一学期期末试卷
- 中国劳动关系学院《形势与政策(三)》2022-2023学年第一学期期末试卷
- 中国矿业大学《统计学原理》2021-2022学年第一学期期末试卷
- 中国矿业大学《设计学学科论文写作指导》2022-2023学年第一学期期末试卷
- 建筑给水排水工程复习资料
- 中国矿业大学《电影艺术美学》2022-2023学年第一学期期末试卷
- 中国矿业大学《操作系统课程设计》2021-2022学年期末试卷
- 中国计量大学《文献检索与论文写作》2023-2024学年期末试卷
- 2024家教中介合同范本
- 钢结构工程冬季施工方案
- 2024-2030年中国度假酒店行业未来发展趋势及投资经营策略分析报告
- 2024-2030年中国安防行业发展现状及竞争格局分析报告权威版
- ktv营销业绩提成合同模板
- 英语-重庆市2025年普通高等学校招生全国统一考试11月调研试卷(康德卷)试题和答案
- 桩基及基坑支护工程技术施工方案(三篇)
- 招聘笔试题与参考答案(某大型国企)2024年
- 安徽理工大学《岩土力学与工程》2021-2022学年第一学期期末试卷
- 有限空间应急演练专项方案
- 2024-2030年中国演艺行业发展分析及发展前景与趋势预测研究报告
- 2025年广东省高中学业水平考试春季高考数学试题(含答案解析)
评论
0/150
提交评论