




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年辽宁省本溪市某学校数学高职单招试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.现无放回地从1,2,3,4,5,6这6个数字中任意取两个,两个数均为偶数的概率是()A.1/5B.1/4C.1/3D.1/2
2.“a,b,c都不等于0”的否定是A.a,b,c都等于0B.a,b,c不都等于0C.a,b,c中至少有一个不等于0D.a,b,c中至少有一个等于0
3.若a<b<0,则下列结论正确的是()A.a2<b2
B.a3<b<b3</b
C.|a|<|b|
D.a/b<1
4.函数y=sinx+cosx的最小值和最小正周期分别是()A.
B.-2,2π
C.
D.-2,π
5.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法
6.对于数列0,0,0,...,0,...,下列表述正确的是()A.是等比但不是等差数列B.既是等差又是等比数列C.既不是等差又不是等比数列D.是等差但不是等比数列
7.函数在(-,3)上单调递增,则a的取值范围是()A.a≥6B.a≤6C.a>6D.-8
8.从1,2,3,4,5这5个数中,任取四个上数组成没有重复数字的四个数,其中5的倍数的概率是()A.
B.
C.
D.
9.若函数f(x-)=x2+,则f(x+1)等于()A.(x+1)2+
B.(x-)2+
C.(x+1)2+2
D.(x+1)2+1
10.己知向量a=(3,-2),b=(-1,1),则3a+2b
等于()A.(-7,4)B.(7,4)C.(-7,-4)D.(7,-4)
二、填空题(10题)11.
12.的值是
。
13.若直线的斜率k=1,且过点(0,1),则直线的方程为
。
14.在△ABC中,若acosA=bcosB,则△ABC是
三角形。
15.已知函数f(x)=ax3的图象过点(-1,4),则a=_______.
16.已知(2,0)是双曲线x2-y2/b2=1(b>0)的焦点,则b=______.
17.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:4,现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有6件,那么n=
。
18.双曲线x2/4-y2/3=1的离心率为___.
19.已知等差数列{an}的公差是正数,且a3·a7=-12,a4+a6=-4,则S20=_____.
20.双曲线x2/4-y2/3=1的虚轴长为______.
三、计算题(5题)21.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
22.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
23.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
24.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
25.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
四、证明题(5题)26.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.
27.若x∈(0,1),求证:log3X3<log3X<X3.
28.己知sin(θ+α)=sin(θ+β),求证:
29.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.
30.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
五、简答题(5题)31.证明上是增函数
32.如图:在长方体从中,E,F分别为和AB和中点。(1)求证:AF//平面。(2)求与底面ABCD所成角的正切值。
33.若α,β是二次方程的两个实根,求当m取什么值时,取最小值,并求出此最小值
34.拋物线的顶点在原点,焦点为椭圆的左焦点,过点M(-1,-1)引抛物线的弦使M为弦的中点,求弦长
35.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.
六、综合题(5题)36.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
37.
38.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
39.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
40.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.
参考答案
1.A
2.D
3.B
4.A三角函数的性质,周期和最值.因为y=,所以当x+π/4=2kπ-π/2k∈Z时,ymin=T=2π.
5.C为了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,这种方式具有代表性,比较合理的抽样方法是分层抽样。
6.D
7.A
8.A
9.C由题可知,f(0)=2=f(-1+1),因此x=-1时,函数值为2,所以正确答案为C。
10.D
11.-3由于cos(x+π/6)的最小值为-1,所以函数f(x)的最小值为-3.
12.
,
13.3x-y+1=0因为直线斜率为k=1且过点(0,1),所以方程是y-2=3x,即3x-y+1=0。
14.等腰或者直角三角形,
15.-2函数值的计算.由函数f(x)=ax3-2x过点(-1,4),得4=a(-1)3-2×(-1),解得a=-2.
16.
双曲线的性质.由题意:c=2,a=1,由c2=a2+b2.得b2=4-1=3,所以b=.
17.72
18.e=双曲线的定义.因为
19.180,
20.2双曲线的定义.b2=3,.所以b=.所以2b=2.
21.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
22.
23.
24.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
25.
26.证明:考虑对数函数y=lgx的限制知
:当x∈(1,10)时,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B
27.
28.
29.
30.
∴PD//平面ACE.
31.证明:任取且x1<x2∴即∴在是增函数
32.
33.
34.
35.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=
36.
37.
38.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上,将a=b或a=-b代入直线方程得:a=4或a=1当a=4时,b
=4,此时r=4,圆的方程为(x-4)2
+(y-4)2=16当a=1时,b
=-1,此时r=1,圆的方程为(x-1)2
+(y+1)2=1
39.解:(1)直线l过A(0,2),B(-2,-2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 培训机构安全教育课
- 2025综合文化活动中心租赁合同
- 2025订购茶叶合同模板
- 2025版合同:国内许可合同的格式
- 2025年房屋买卖合同
- 2025建筑工程补充合同
- 2024-2025教科版科学一年级下册第二单元测试卷及答案
- 2025年供气合同常用范本
- 小数的读法和写法教学设计
- 2025标准技术咨询合同范本
- GB/T 4909.2-2009裸电线试验方法第2部分:尺寸测量
- DB11-T 065-2022电气防火检测技术规范
- 09S304 卫生设备安装图集
- 肌肉注射操作评分标准
- 配电箱验收记录表
- DB11-T1788-2020技术转移服务人员能力规范
- 建设项目用地预审与选址意见课件讲解
- GB∕T 23524-2019 石油化工废铂催化剂化学分析方法 铂含量的测定 电感耦合等离子体原子发射光谱法
- 宝宝生日祝福可爱卡通电子相册PPT模板
- 盗窃案件现场勘查应注意的问题
- 用人单位职业健康监护档案(一人一档)
评论
0/150
提交评论