版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函,则的最小值为( )AB1C0D2在等差数列中,若为前项和,则的值是( )A156B124C136D1803已知定义
2、在R上的偶函数满足,当时,函数(),则函数与函数的图象的所有交点的横坐标之和为( )A2B4C5D64已知集合,则=( )ABCD5命题“”的否定是( )ABCD6若函数的图象过点,则它的一条对称轴方程可能是( )ABCD7复数满足为虚数单位),则的虚部为( )ABCD8已知双曲线:的焦距为,焦点到双曲线的渐近线的距离为,则双曲线的渐近线方程为()ABCD9已知正四面体的棱长为,是该正四面体外接球球心,且,则( )ABCD10若复数满足(是虚数单位),则( )ABCD11已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则的值为( )A2B3C4D12在平面直角坐
3、标系中,将点绕原点逆时针旋转到点,设直线与轴正半轴所成的最小正角为,则等于( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13假如某人有壹元、贰元、伍元、拾元、贰拾元、伍拾元、壹佰元的纸币各两张,要支付贰佰壹拾玖(219)元的货款,则有_种不同的支付方式.14在中,内角所对的边分别是,若,则_.15在四面体中, 分别是的中点则下述结论:四面体的体积为;异面直线所成角的正弦值为;四面体外接球的表面积为;若用一个与直线垂直,且与四面体的每个面都相交的平面去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为其中正确的有_(填写所有正确结论的编号)16实数,满足,如果目标函数
4、的最小值为,则的最小值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)选修4-5:不等式选讲已知函数的最大值为3,其中(1)求的值;(2)若,求证:18(12分)已知函数,当时,有极大值3;(1)求,的值;(2)求函数的极小值及单调区间.19(12分)已知函数.(1)讨论的单调性;(2)若函数在区间上的最小值为,求m的值.20(12分)在平面直角坐标系中,椭圆:的右焦点为(,为常数),离心率等于0.8,过焦点、倾斜角为的直线交椭圆于、两点求椭圆的标准方程;若时,求实数;试问的值是否与的大小无关,并证明你的结论21(12分)移动支付(支付宝及微信支付)已经渐渐成为
5、人们购物消费的一种支付方式,为调查市民使用移动支付的年龄结构,随机对100位市民做问卷调查得到列联表如下:(1)将上列联表补充完整,并请说明在犯错误的概率不超过0.01的前提下,认为支付方式与年龄是否有关?(2)在使用移动支付的人群中采用分层抽样的方式抽取10人做进一步的问卷调查,从这10人随机中选出3人颁发参与奖励,设年龄都低于35岁(含35岁)的人数为,求的分布列及期望.(参考公式:(其中)22(10分)已知函数.(1)若恒成立,求的取值范围;(2)设函数的极值点为,当变化时,点构成曲线,证明:过原点的任意直线与曲线有且仅有一个公共点.参考答案一、选择题:本题共12小题,每小题5分,共60
6、分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】,利用整体换元法求最小值.【详解】由已知,又,故当,即时,.故选:B.【点睛】本题考查整体换元法求正弦型函数的最值,涉及到二倍角公式的应用,是一道中档题.2A【解析】因为,可得,根据等差数列前项和,即可求得答案.【详解】,.故选:A.【点睛】本题主要考查了求等差数列前项和,解题关键是掌握等差中项定义和等差数列前项和公式,考查了分析能力和计算能力,属于基础题.3B【解析】由函数的性质可得:的图像关于直线对称且关于轴对称,函数()的图像也关于对称,由函数图像的作法可知两个图像有四个交点,且两两关于直线对称,则与的图像所有交点的横坐
7、标之和为4得解.【详解】由偶函数满足,可得的图像关于直线对称且关于轴对称,函数()的图像也关于对称,函数的图像与函数()的图像的位置关系如图所示,可知两个图像有四个交点,且两两关于直线对称,则与的图像所有交点的横坐标之和为4.故选:B【点睛】本题主要考查了函数的性质,考查了数形结合的思想,掌握函数的性质是解题的关键,属于中档题.4D【解析】先求出集合A,B,再求集合B的补集,然后求【详解】,所以 .故选:D【点睛】此题考查的是集合的并集、补集运算,属于基础题.5D【解析】根据全称命题的否定是特称命题,对命题进行改写即可.【详解】全称命题的否定是特称命题,所以命题“,”的否定是:,故选D【点睛】
8、本题考查全称命题的否定,难度容易.6B【解析】把已知点坐标代入求出,然后验证各选项【详解】由题意,或,不妨取或,若,则函数为,四个选项都不合题意,若,则函数为,只有时,即是对称轴故选:B【点睛】本题考查正弦型复合函数的对称轴,掌握正弦函数的性质是解题关键7C【解析】,分子分母同乘以分母的共轭复数即可.【详解】由已知,故的虚部为.故选:C.【点睛】本题考查复数的除法运算,考查学生的基本运算能力,是一道基础题.8A【解析】利用双曲线:的焦点到渐近线的距离为,求出,的关系式,然后求解双曲线的渐近线方程【详解】双曲线:的焦点到渐近线的距离为,可得:,可得,则的渐近线方程为故选A【点睛】本题考查双曲线的
9、简单性质的应用,构建出的关系是解题的关键,考查计算能力,属于中档题.9A【解析】如图设平面,球心在上,根据正四面体的性质可得,根据平面向量的加法的几何意义,重心的性质,结合已知求出的值.【详解】如图设平面,球心在上,由正四面体的性质可得:三角形是正三角形,在直角三角形中,因为为重心,因此,则,因此,因此,则,故选A.【点睛】本题考查了正四面体的性质,考查了平面向量加法的几何意义,考查了重心的性质,属于中档题.10B【解析】利用复数乘法运算化简,由此求得.【详解】依题意,所以.故选:B【点睛】本小题主要考查复数的乘法运算,考查复数模的计算,属于基础题.11B【解析】因为将函数(,)的图象向右平移
10、个单位长度后得到函数的图象,可得,结合已知,即可求得答案.【详解】将函数(,)的图象向右平移个单位长度后得到函数的图象,又和的图象都关于对称,由,得,即,又,.故选:B.【点睛】本题主要考查了三角函数图象平移和根据图象对称求参数,解题关键是掌握三角函数图象平移的解法和正弦函数图象的特征,考查了分析能力和计算能力,属于基础题.12A【解析】设直线直线与轴正半轴所成的最小正角为,由任意角的三角函数的定义可以求得的值,依题有,则,利用诱导公式即可得到答案.【详解】如图,设直线直线与轴正半轴所成的最小正角为因为点在角的终边上,所以依题有,则,所以,故选:A【点睛】本题考查三角函数的定义及诱导公式,属于
11、基础题.二、填空题:本题共4小题,每小题5分,共20分。131【解析】按照个位上的9元的支付情况分类,三个数位上的钱数分步计算,相加即可【详解】9元的支付有两种情况,或者,当9元采用方式支付时,200元的支付方式为,或者或者共3种方式,10元的支付只能用1张10元,此时共有种支付方式;当9元采用方式支付时:200元的支付方式为,或者或者共3种方式,10元的支付只能用1张10元,此时共有种支付方式;所以总的支付方式共有种故答案为:1【点睛】本题考查了分类加法计数原理和分步乘法计数原理,属于中档题做题时注意分类做到不重不漏,分步做到步骤完整14【解析】先求得的值,由此求得的值,再利用正弦定理求得的
12、值.【详解】由于,所以,所以.由正弦定理得.故答案为:【点睛】本小题主要考查正弦定理解三角形,考查同角三角函数的基本关系式,考查两角和的正弦公式,考查三角形的内角和定理,属于中档题.15【解析】补图成长方体,在长方体中利用割补法求四面体的体积,和外接球的表面积,以及异面直线的夹角,作出截面即可计算截面面积的最值.【详解】根据四面体特征,可以补图成长方体设其边长为,解得补成长,宽,高分别为的长方体,在长方体中:四面体的体积为,故正确异面直线所成角的正弦值等价于边长为的矩形的对角线夹角正弦值,可得正弦值为,故错;四面体外接球就是长方体的外接球,半径,其表面积为,故正确;由于,故截面为平行四边形,可
13、得,设异面直线与所成的角为,则,算得,故正确故答案为:【点睛】此题考查根据几何体求体积,外接球的表面积,异面直线夹角和截面面积最值,关键在于熟练掌握点线面位置关系的处理方法,补图法作为解决体积和外接球问题的常用方法,平常需要积累常见几何体的补图方法.16【解析】作出不等式组对应的平面区域,利用目标函数的最小值为,确定出的值,进而确定出C点坐标,结合目标函数几何意义,从而求得结果.【详解】先做的区域如图可知在三角形ABC区域内,由得可知,直线的截距最大时,取得最小值,此时直线为,作出直线,交于A点,由图象可知,目标函数在该点取得最小值,所以直线也过A点,由,得,代入,得,所以点C的坐标为等价于点
14、与原点连线的斜率,所以当点为点C时,取得最小值,最小值为,故答案为:.【点睛】该题考查的是有关线性规划的问题,在解题的过程中,注意正确画出约束条件对应的可行域,根据最值求出参数,结合分式型目标函数的意义求得最优解,属于中档题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)见解析【解析】(1)分三种情况去绝对值,求出最大值与已知最大值相等列式可解得;(2)将所证不等式转化为2ab1,再构造函数利用导数判断单调性求出最小值可证【详解】(1),. 当时,取得最大值. . (2)由(),得,. ,当且仅当时等号成立,. 令,.则在上单调递减. 当时,.【点睛】本题考查
15、了绝对值不等式的解法,属中档题本题主要考查了绝对值不等式的求解,以及不等式的恒成立问题,其中解答中根据绝对值的定义,合理去掉绝对值号,及合理转化恒成立问题是解答本题的关键,着重考查分析问题和解答问题的能力,以及转化思想的应用.18(1);(2)极小值为,递减区间为:,递增区间为.【解析】(1)由题意得到关于实数的方程组,求解方程组,即可求得的值;(2)结合(1)中的值得出函数的解析式,即可利用导数求得函数的单调区间和极小值.【详解】(1)由题意,函数,则,由当时,有极大值,则,解得.(2)由(1)可得函数的解析式为,则,令,即,解得,令,即,解得或,所以函数的单调减区间为,递增区间为,当时,函
16、数取得极小值,极小值为.当时,有极大值3.【点睛】本题主要考查了函数的极值的概念,以及利用导数求解函数的单调区间和极值,其中解答中熟记函数的极值的概念,以及函数的导数与原函数的关系,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.19(1)见解析 (2)【解析】(1)先求导,再对m分类讨论,求出的单调性;(2)对m分三种情况讨论求函数在区间上的最小值即得解.【详解】(1) 若,当时,;当时.,所以在上单调递增,在上单调递减若.在R上单调递增 若,当时,;当时.,所以在上单调递增,在上单调递减 (2)由(1)可知,当时,在上单调递增,则.则不合题意 当时,在上单调递减,在上单调递增.
17、则,即 又因为单调递增,且,故 综上,【点睛】本题主要考查利用导数研究函数的单调性和最值,意在考查学生对这些知识的理解掌握水平.20(1)(2)(3)为定值【解析】试题分析:(1)利用待定系数法可得,椭圆方程为;(2)我们要知道=的条件应用,在于直线交椭圆两交点M,N的横坐标为,这样代入椭圆方程,容易得到,从而解得;(3) 需讨论斜率是否存在一方面斜率不存在即=时,由(2)得;另一方面,当斜率存在即时,可设直线的斜率为,得直线MN:,联立直线与椭圆方程,利用韦达定理和焦半径公式,就能得到,所以为定值,与直线的倾斜角的大小无关试题解析:(1),得:,椭圆方程为(2)当时,得:,于是当=时,于是,
18、得到(3)当=时,由(2)知当时,设直线的斜率为,则直线MN:联立椭圆方程有,=+=得综上,为定值,与直线的倾斜角的大小无关考点:(1)待定系数求椭圆方程;(2)椭圆简单的几何性质;(3)直线与圆锥曲线21(1)列联表见解析,在犯错误的概率不超过0.01的前提下,认为支付方式与年龄有关;(2)分布列见解析,期望为.【解析】(1)根据题中所给的条件补全列联表,根据列联表求出观测值,把观测值同临界值进行比较,得到能在犯错误的概率不超过0.01的前提下,认为支付方式与年龄有关.(2)首先确定的取值,求出相应的概率,可得分布列和数学期望.【详解】(1)根据题意及列联表可得完整的列联表如下:35岁以下(含35岁)35岁以上合计使用移动支付401050不使用移动支付104050合计5050100根据公式可得,所以在犯错误的概率不超过0.01的前提下,认为支付方式与年龄有关.(2)根据分层抽样,可知35岁以下(含35岁)的人数为8人,35岁以上的有2人,所以获得奖励的35岁以下(含35岁)的人数为,则的可能为1,2,3,且,其分布列为123.【点睛】独立性检验依据的值结合附表数据进行判断,另外,离散型随机变量的分布列,在求解的过程中,注意变量的取值以及
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校音乐教师工作总结范文范本
- 运动改造大脑课件
- 高中教师培训心得十篇
- 与家长交流心得体会
- 那个星期天资料课件
- 活动策划方案模板锦集10篇
- 销售员一月份工作总结
- 企业员工年终总结参考10篇
- 员工上班迟到检讨书三篇
- 万能检讨书(集合15篇)
- 大学生劳动素养的现状调查及影响因素分析
- 分体空调维修技术方案
- 慢性肾脏病临床诊疗指南
- 成人气管切开拔管中国专家共识解读
- 隧道工程施工环境保护措施
- 小学生保险知识讲座
- 2024年中国龙江森林工业集团招聘笔试参考题库含答案解析
- 2023-2024学年秋季小学三年级上册语文部编版课后作业第22课《读不完的大书》(含答案)
- 投资项目居间协议书
- 高中学学生社团章程
- 口腔门诊验收管理制度
评论
0/150
提交评论