北京市第六十六2023学年高考数学倒计时模拟卷含解析_第1页
北京市第六十六2023学年高考数学倒计时模拟卷含解析_第2页
北京市第六十六2023学年高考数学倒计时模拟卷含解析_第3页
北京市第六十六2023学年高考数学倒计时模拟卷含解析_第4页
北京市第六十六2023学年高考数学倒计时模拟卷含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知边长为4的菱形,为的中点,为平面内一点,若,则( )A16B14C12D82已知是空间中两个不同的平面,是空间中两条不同的直线,则下列说法正确的是( )A若,且,则B若,且,则C若,且,

2、则D若,且,则3如图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是()A2017年第一季度GDP增速由高到低排位第5的是浙江省B与去年同期相比,2017年第一季度的GDP总量实现了增长C2017年第一季度GDP总量和增速由高到低排位均居同一位的省只有1个D去年同期河南省的GDP总量不超过4000亿元4在中,内角A,B,C所对的边分别为a,b,c,且.若,的面积为,则( )A5BC4D165某四棱锥的三视图如图所示,该几何体的体积是( )A8BC4D6设是等差数列,且公差不为零,其前项和为则“,”是“为递增数列”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也

3、不必要条件7已知函数,当时,恒成立,则的取值范围为( )ABCD8已知定义在上的函数满足,且当时,则方程的最小实根的值为( )ABCD9若函数在时取得最小值,则( )ABCD10若为虚数单位,则复数在复平面上对应的点位于( )A第一象限B第二象限C第三象限D第四象限11已知四棱锥中,平面,底面是边长为2的正方形,为的中点,则异面直线与所成角的余弦值为( )ABCD12如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F且EF=,则下列结论中错误的是( )AACBEBEF平面ABCDC三棱锥A-BEF的体积为定值D异面直线AE,BF所成的角为定值二、填空题:本题共

4、4小题,每小题5分,共20分。13已知双曲线的渐近线与准线的一个交点坐标为,则双曲线的焦距为_.14在直角坐标系中,某等腰直角三角形的两个顶点坐标分别为,函数的图象经过该三角形的三个顶点,则的解析式为_.15三个小朋友之间送礼物,约定每人送出一份礼物给另外两人中的一人(送给两个人的可能性相同),则三人都收到礼物的概率为_.16已知抛物线的焦点为,斜率为的直线过且与抛物线交于两点,为坐标原点,若在第一象限,那么_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知非零实数满足 (1)求证:; (2)是否存在实数,使得恒成立?若存在,求出实数的取值范围; 若不存在,请说

5、明理由18(12分)已知函数(),是的导数.(1)当时,令,为的导数.证明:在区间存在唯一的极小值点;(2)已知函数在上单调递减,求的取值范围.19(12分)某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出1盒该产品获利50元,未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季进了160盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.(1)根据直方图估计这个开学季内市场需求量的平均数和众数;(2)将表示为的函数;(3)以需求量的频率作为各需求量的概率,求开学季

6、利润不少于4800元的概率.20(12分)在四棱椎中,四边形为菱形,分别为,中点.(1)求证:;(2)求平面与平面所成锐二面角的余弦值.21(12分)如图,直角三角形所在的平面与半圆弧所在平面相交于,,,分别为,的中点, 是上异于,的点, .(1)证明:平面平面;(2)若点为半圆弧上的一个三等分点(靠近点)求二面角的余弦值.22(10分)某工厂的机器上有一种易损元件A,这种元件在使用过程中发生损坏时,需要送维修处维修工厂规定当日损坏的元件A在次日早上 8:30 之前送到维修处,并要求维修人员当日必须完成所有损坏元件A的维修工作每个工人独立维修A元件需要时间相同维修处记录了某月从1日到20日每天

7、维修元件A的个数,具体数据如下表:日期 1 日 2 日 3 日 4 日 5 日 6 日 7 日 8 日 9 日 10 日 元件A个数 9 15 12 18 12 18 9 9 24 12 日期 11 日 12 日 13 日 14 日 15 日 16 日 17 日 18 日 19 日 20 日 元件A个数 12 24 15 15 15 12 15 15 15 24 从这20天中随机选取一天,随机变量X表示在维修处该天元件A的维修个数()求X的分布列与数学期望;()若a,b,且b-a=6,求最大值;()目前维修处有两名工人从事维修工作,为使每个维修工人每天维修元件A的个数的数学期望不超过4个,至少

8、需要增加几名维修工人?(只需写出结论)参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】取中点,可确定;根据平面向量线性运算和数量积的运算法则可求得,利用可求得结果.【详解】取中点,连接,即.,则.故选:.【点睛】本题考查平面向量数量积的求解问题,涉及到平面向量的线性运算,关键是能够将所求向量进行拆解,进而利用平面向量数量积的运算性质进行求解.2D【解析】利用线面平行和垂直的判定定理和性质定理,对选项做出判断,举出反例排除.【详解】解:对于,当,且,则与的位置关系不定,故错;对于,当时,不能判定,故错;对于,若,且,则与的

9、位置关系不定,故错;对于,由可得,又,则故正确故选:【点睛】本题考查空间线面位置关系.判断线面位置位置关系利用好线面平行和垂直的判定定理和性质定理. 一般可借助正方体模型,以正方体为主线直观感知并准确判断3C【解析】利用图表中的数据进行分析即可求解.【详解】对于A选项:2017年第一季度5省的GDP增速由高到低排位分别是:江苏、辽宁、山东、河南、浙江,故A正确;对于B选项:与去年同期相比,2017年第一季度5省的GDP均有不同的增长,所以其总量也实现了增长,故B正确;对于C选项:2017年第一季度GDP总量由高到低排位分别是:江苏、山东、浙江、河南、辽宁,2017年第一季度5省的GDP增速由高

10、到低排位分别是:江苏、辽宁、山东、河南、浙江,均居同一位的省有2个,故C错误;对于D选项:去年同期河南省的GDP总量,故D正确.故选:C.【点睛】本题考查了图表分析,学生的分析能力,推理能力,属于基础题.4C【解析】根据正弦定理边化角以及三角函数公式可得,再根据面积公式可求得,再代入余弦定理求解即可.【详解】中,由正弦定理得,又,又,又,.,由余弦定理可得,可得.故选:C【点睛】本题主要考查了解三角形中正余弦定理与面积公式的运用,属于中档题.5D【解析】根据三视图知,该几何体是一条垂直于底面的侧棱为2的四棱锥,画出图形,结合图形求出底面积代入体积公式求它的体积【详解】根据三视图知,该几何体是侧

11、棱底面的四棱锥,如图所示:结合图中数据知,该四棱锥底面为对角线为2的正方形,高为PA=2,四棱锥的体积为.故选:D.【点睛】本题考查由三视图求几何体体积,由三视图正确复原几何体是解题的关键,考查空间想象能力属于中等题.6A【解析】根据等差数列的前项和公式以及充分条件和必要条件的定义进行判断即可【详解】是等差数列,且公差不为零,其前项和为,充分性:,则对任意的恒成立,则,若,则数列为单调递减数列,则必存在,使得当时,则,不合乎题意;若,由且数列为单调递增数列,则对任意的,合乎题意.所以,“,”“为递增数列”;必要性:设,当时,此时,但数列是递增数列.所以,“,”“为递增数列”.因此,“,”是“为

12、递增数列”的充分而不必要条件.故选:A.【点睛】本题主要考查充分条件和必要条件的判断,结合等差数列的前项和公式是解决本题的关键,属于中等题7A【解析】分析可得,显然在上恒成立,只需讨论时的情况即可,然后构造函数,结合的单调性,不等式等价于,进而求得的取值范围即可.【详解】由题意,若,显然不是恒大于零,故.,则在上恒成立;当时,等价于,因为,所以.设,由,显然在上单调递增,因为,所以等价于,即,则.设,则.令,解得,易得在上单调递增,在上单调递减,从而,故.故选:A.【点睛】本题考查了不等式恒成立问题,利用函数单调性是解决本题的关键,考查了学生的推理能力,属于基础题.8C【解析】先确定解析式求出

13、的函数值,然后判断出方程的最小实根的范围结合此时的,通过计算即可得到答案.【详解】当时,所以,故当时,所以,而,所以,又当时,的极大值为1,所以当时,的极大值为,设方程的最小实根为,则,即,此时令,得,所以最小实根为411.故选:C.【点睛】本题考查函数与方程的根的最小值问题,涉及函数极大值、函数解析式的求法等知识,本题有一定的难度及高度,是一道有较好区分度的压轴选这题.9D【解析】利用辅助角公式化简的解析式,再根据正弦函数的最值,求得在函数取得最小值时的值【详解】解:,其中,故当,即时,函数取最小值,所以,故选:D【点睛】本题主要考查辅助角公式,正弦函数的最值的应用,属于基础题10D【解析】

14、根据复数的运算,化简得到,再结合复数的表示,即可求解,得到答案【详解】由题意,根据复数的运算,可得,所对应的点为位于第四象限.故选D.【点睛】本题主要考查了复数的运算,以及复数的几何意义,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力,属于基础题11B【解析】由题意建立空间直角坐标系,表示出各点坐标后,利用即可得解.【详解】平面,底面是边长为2的正方形,如图建立空间直角坐标系,由题意:,为的中点,.,异面直线与所成角的余弦值为即为.故选:B.【点睛】本题考查了空间向量的应用,考查了空间想象能力,属于基础题.12D【解析】A通过线面的垂直关系可证真假;

15、B根据线面平行可证真假;C根据三棱锥的体积计算的公式可证真假;D根据列举特殊情况可证真假.【详解】A因为,所以平面,又因为平面,所以,故正确;B因为,所以,且平面,平面,所以平面,故正确;C因为为定值,到平面的距离为,所以为定值,故正确;D当,取为,如下图所示:因为,所以异面直线所成角为,且,当,取为,如下图所示:因为,所以四边形是平行四边形,所以,所以异面直线所成角为,且,由此可知:异面直线所成角不是定值,故错误.故选:D.【点睛】本题考查立体几何中的综合应用,涉及到线面垂直与线面平行的证明、异面直线所成角以及三棱锥体积的计算,难度较难.注意求解异面直线所成角时,将直线平移至同一平面内.二、

16、填空题:本题共4小题,每小题5分,共20分。131【解析】由双曲线的渐近线,以及求得的值即可得答案【详解】由于双曲线的渐近线与准线的一个交点坐标为,所以,即,把代入,得,即又联立,得所以故答案是:1【点睛】本题考查双曲线的性质,注意题目“双曲线的渐近线与准线的一个交点坐标为”这一条件的运用,另外注意题目中要求的焦距即,容易只计算到,就得到结论14【解析】结合题意先画出直角坐标系,点出所有可能组成等腰直角三角形的点,采用排除法最终可确定为点,再由函数性质进一步求解参数即可【详解】等腰直角三角形的第三个顶点可能的位置如下图中的点,其中点与已有的两个顶点横坐标重复,舍去;若为点则点与点的中间位置的点

17、的纵坐标必然大于或小于,不可能为,因此点也舍去,只有点满足题意.此时点为最大值点,所以,又,则,所以点,之间的图像单调,将,代入的表达式有由知,因此.故答案为:【点睛】本题考查由三角函数图像求解解析式,数形结合思想,属于中档题15【解析】基本事件总数,三人都收到礼物包含的基本事件个数由此能求出三人都收到礼物的概率【详解】三个小朋友之间准备送礼物,约定每人只能送出一份礼物给另外两人中的一人(送给两个人的可能性相同),基本事件总数,三人都收到礼物包含的基本事件个数则三人都收到礼物的概率故答案为:【点睛】本题考查古典概型概率的求法,考查运算求解能力,属于基础题.162【解析】如图所示,先证明,再利用

18、抛物线的定义和相似得到.【详解】由题得,.因为.所以,过点A、B分别作准线的垂线,垂足分别为M,N,过点B作于点E,设|BF|=m,|AF|=n,则|BN|=m,|AM|=n,所以|AE|=n-m,因为,所以|AB|=3(n-m),所以3(n-m)=n+m,所以.所以.故答案为:2【点睛】本题主要考查直线和抛物线的位置关系,考查抛物线的定义,意在考查学生对这些知识的理解掌握水平.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)见解析(2)存在,【解析】(1)利用作差法即可证出.(2)将不等式通分化简可得,讨论或,分离参数,利用基本不等式即可求解.【详解】又即即当时,即恒

19、成立(当且仅当时取等号),故当时恒成立(当且仅当时取等号),故综上,【点睛】本题考查了作差法证明不等式、基本不等式求最值、考查了分类讨论的思想,属于基础题.18(1)见解析;(2)【解析】(1)设,注意到在上单增,再利用零点存在性定理即可解决;(2)函数在上单调递减,则在恒成立,即在上恒成立,构造函数,求导讨论的最值即可.【详解】(1)由已知,所以,设,当时,单调递增,而,且在上图象连续不断.所以在上有唯一零点,当时,;当时,;在单调递减,在单调递增,故在区间上存在唯一的极小值点,即在区间上存在唯一的极小值点;(2)设,在单调递增,即,从而,因为函数在上单调递减,在上恒成立,令,在上单调递减,

20、当时,则在上单调递减,符合题意.当时,在上单调递减,所以一定存在,当时,在上单调递增,与题意不符,舍去.综上,的取值范围是【点睛】本题考查利用导数研究函数的极值点、不等式恒成立问题,在处理恒成立问题时,通常是构造函数,转化成函数的最值来处理,本题是一道较难的题.19(1),众数为150;(2) ;(3)【解析】(1)由频率直方图分别求出各组距内的频率,由此能求出这个开学季内市场需求量的众数和平均数;(2)由已知条件推导出当时,当时,由此能将表示为的函数;(3)利用频率分布直方图能求出利润不少于4800元的概率【详解】(1)由直方图可估计需求量的众数为150 ,由直方图可知的频率为:由直方图可知

21、的频率为:由直方图可知的频率为:由直方图可知的频率为:由直方图可知的频率为:估计需求量的平均数为:(2)当时,当时, (3)由(2)知 当时,当时,得开学季利润不少于4800元的需求量为由频率分布直方图可所求概率【点睛】本题考查频率分布直方图的应用,考查函数解析式的求法,考查概率的估计,是中档题,解题时要注意频率分布直方图的合理运用20(1)证明见解析;(2).【解析】(1)证明,得到平面,得到证明.(2)以点为坐标原点,建立如图所示的空间直角坐标系,平面的一个法向量为,平面的一个法向量为,计算夹角得到答案.【详解】(1)因为四边形是菱形,且,所以是等边三角形,又因为是的中点,所以,又因为,所以,又,所以,又,所以平面,所以,又因为是菱形,所以,又,所以平面,所以.(2)由题意结合菱形的性质易知,以点为坐标原点,建立如图所示的空间直角坐标系,则,设平面的一个法向量为,则:,据此可得平面的一个法向量为,设平面的一个法向量为,则:,据此可得平面的一个法向量为,平面与平面所成锐二面角的余弦值.【点睛】本题考查了线线垂直,二面角,意在考查学生的计算能力和空间想象能力.21(1)详见解析;(2).【解析】(1)由直径所对的圆周角为,可知,通过计算,利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论