2023学年黑龙江省齐齐哈尔市第五十三中学九年级数学第一学期期末学业质量监测模拟试题含解析_第1页
2023学年黑龙江省齐齐哈尔市第五十三中学九年级数学第一学期期末学业质量监测模拟试题含解析_第2页
2023学年黑龙江省齐齐哈尔市第五十三中学九年级数学第一学期期末学业质量监测模拟试题含解析_第3页
2023学年黑龙江省齐齐哈尔市第五十三中学九年级数学第一学期期末学业质量监测模拟试题含解析_第4页
2023学年黑龙江省齐齐哈尔市第五十三中学九年级数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1一元二次方程的根的情况是 A有两个不相等的实数根B有两个相等的实数根C只有一个实数根D没有实数根21米长的标杆直立在水平的地面上,它在阳光下的影长为0.8米;在同一时刻,若某电视塔的影长为100米,则此电视塔的高度应是( )A80米B85米C120米D125米3如图,ABCD的对角线AC,BD交于点O,CE

2、平分BCD交AB于点E,交BD于点F,且ABC60,AB2BC,连接OE下列结论:EOAC;SAOD4SOCF;AC:BD:7;FB2OFDF其中正确的是( )ABCD4已知关于x的一元二次方程的一个根为1,则m的值为( )A1B-8C-7D75如图所示,在O中,=,A=30,则B=( )A150B75C60D156如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与ABC相似,则点E的坐标不可能是A(6,0)B(6,3)C(6,5)D(4,2)7下列说法正确的是( )A了解飞行员视力的达标率应使用抽样调查B一组数据3,6,6,7,9的

3、中位数是6C从2000名学生中选200名学生进行抽样调查,样本容量为2000D一组数据1,2,3,4,5的方差是108下列说法正确的是()A“购买1张彩票就中奖”是不可能事件B“概率为0.0001的事件”是不可能事件C“任意画一个三角形,它的内角和等于180”是必然事件D任意掷一枚质地均匀的硬币10次,正面向上的一定是5次9如图,点在线段上,在的同侧作等腰和等腰,与、分别交于点、.对于下列结论:;.其中正确的是( )ABCD10如图,在矩形中,将向内翻折,点 落在上,记为,折痕为若将沿向内翻折,点恰好 落在上,记为,则的长为( )ABCD11下列事件为必然事件的是()A打开电视机,它正在播广告

4、Ba取任一个实数,代数式a2+1的值都大于0C明天太阳从西方升起D抛掷一枚硬币,一定正面朝上12如图,将沿着弦翻折,劣弧恰好经过圆心.如果半径为4,那么的弦长度为ABCD二、填空题(每题4分,共24分)13ABC中,C90,tanA,则sinA+cosA_14一个半径为5cm的球形容器内装有水,若水面所在圆的直径为8cm,则容器内水的高度为_cm15已知关于x的一元二次方程(m1)x2+x+1=0有实数根,则m的取值范围是 16如图,在中,于,已知,则_17已知平行四边形中,且于点,则_18如图,O与矩形ABCD的边AB、CD分别相交于点E、F、G、H,若AE+CH=6,则BG+DF为_三、解

5、答题(共78分)19(8分)在平面直角坐标系中,点O为坐标原点,抛物线yax2+ax+a(a0)交x轴于点A和点B(点A在点B左边),交y轴于点C,连接AC,tanCAO1(1)如图1,求抛物线的解析式;(2)如图2,D是第一象限的抛物线上一点,连接DB,将线段DB绕点D顺时针旋转90,得到线段DE(点B与点E为对应点),点E恰好落在y轴上,求点D的坐标;(1)如图1,在(2)的条件下,过点D作x轴的垂线,垂足为H,点F在第二象限的抛物线上,连接DF交y轴于点G,连接GH,sinDGH,以DF为边作正方形DFMN,P为FM上一点,连接PN,将MPN沿PN翻折得到TPN(点M与点T为对应点),连

6、接DT并延长与NP的延长线交于点K,连接FK,若FK,求cosKDN的值20(8分)如图,已知O的直径AB=10,弦AC=6,BAC的平分线交O于点D,过点D作DEAC交AC的延长线于点E(1)求证:DE是O的切线(2)求DE的长21(8分)2020年元且,某商场为促销举办抽奖活动规则如下:在一个不透明的纸盒里,装有2个红球和2个黑球,这些球除颜色外都相同顾客每次摸出1个球,若摸到红球,则获得一份奖品;若摸到黑球,则没有奖品(1)如果张大妈只有一次摸球机会,那么张大妈获得奖品的概率是 (2)如果张大妈有两次摸球机会(摸出后不放回),请用“树状图”或“列表”的方法,求张大妈获得两份奖品的概率22

7、(10分)一个二次函数的图象经过(3,1),(0,-2),(-2,6)三点求这个二次函数的解析式并写出图象的顶点23(10分)如图,已知一个,其中,点分别是边上的点,连结,且(1)求证:;(2)若求的面积24(10分)武汉市某中学进行九年级理化实验考查,有A和B两个考查实验,规定每位学生只参加一个实验的考查,并由学生自己抽签决定具体的考查实验,小孟、小柯、小刘都要参加本次考查(1)用列表或画树状图的方法求小孟、小柯都参加实验A考查的概率;(2)他们三人中至少有两人参加实验B的概率 (直接写出结果)25(12分)用适当的方法解下列方程 (1)3x(x+3)2(x+3)(2)2x24x3126将一

8、块面积为的矩形菜地的长减少,它就变成了正方形,求原菜地的长参考答案一、选择题(每题4分,共48分)1、D【分析】由根的判别式判断即可.【详解】解:=b2-4ac=(-4)2-45=-40,方程没有实数根.故选择D.【点睛】本题考查了一元二次方程根与判别式的关系.2、D【解析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似解:设电视塔的高度应是x,根据题意得:=,解得:x=125米故选D命题立意:考查利用所学知识解决实际问题的能力3、B【分析】正确只要证明EC=EA=BC,推出ACB=90,再利用三角形中位线定理即可判断错误想办法证明

9、BF=2OF,推出SBOC=3SOCF即可判断正确设BC=BE=EC=a,求出AC,BD即可判断正确求出BF,OF,DF(用a表示),通过计算证明即可【详解】解:四边形ABCD是平行四边形,CDAB,OD=OB,OA=OC,DCB+ABC=180,ABC=60,DCB=120,EC平分DCB,ECB=DCB=60,EBC=BCE=CEB=60,ECB是等边三角形,EB=BC,AB=2BC,EA=EB=EC,ACB=90,OA=OC,EA=EB, OEBC,AOE=ACB=90,EOAC,故正确,OEBC,OEFBCF, ,OF=OB,SAOD=SBOC=3SOCF,故错误,设BC=BE=EC=

10、a,则AB=2a,AC=a,OD=OB=a,BD=a,AC:BD=a:a=:7,故正确,OF=OB=a,BF=a,BF2=a2,OFDF=a a2,BF2=OFDF,故正确,故选:B【点睛】此题考查相似三角形的判定和性质,平行四边形的性质,角平分线的定义,解直角三角形,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题4、D【解析】直接利用一元二次方程的解的意义将x=1代入求出答案即可【详解】关于x的一元二次方程x2+mx8=0的一个根是1,1+m8=0,解得:m=7.故答案选:D.【点睛】本题考查的知识点是一元二次方程的解,解题的关键是熟练的掌握一元二次方程的解.5、B【详解】在O中

11、,=,AB=AC,ABC是等腰三角形,B=C;又A=30,B=75(三角形内角和定理)故选B考点:圆心角、弧、弦的关系6、B【解析】试题分析:ABC中,ABC=90,AB=6,BC=3,AB:BC=1A、当点E的坐标为(6,0)时,CDE=90,CD=1,DE=1,则AB:BC=CD:DE,CDEABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,CDE=90,CD=1,DE=1,则AB:BCCD:DE,CDE与ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,CDE=90,CD=1,DE=4,则AB:BC=DE:CD,EDCABC,故本选项不符合题意;D、当点E的坐标为

12、(4,1)时,ECD=90,CD=1,CE=1,则AB:BC=CD:CE,DCEABC,故本选项不符合题意故选B7、B【解析】选项A,了解飞行员视力的达标率应使用全面调查,此选项错误;选项B,一组数据3,6,6,7,9的数的个数是奇数,故中位数是处于中间位置的数6,此选项正确;选项C,从2000名学生中选200名学生进行抽样调查,样本容量应该是200,此选项错误;选项D,一组数据1,2,3,4,5的平均数=(1+2+3+4+5)=3,方差=(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2=2,此选项错误故答案选B8、C【解析】试题解析:A. “购买1张彩票就中奖”是不可能事

13、件,错误;B. “概率为0.0001的事件”是不可能事件,错误;C. “任意画一个三角形,它的内角和等于180”是必然事件,正确;D. 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次,错误.故选C.9、A【解析】分析:(1)由等腰RtABC和等腰RtADE三边份数关系可证;(2)通过等积式倒推可知,证明PAMEMD即可;(3)2CB2转化为AC2,证明ACPMCA,问题可证详解:由已知:AC=AB,AD=AEBAC=EADBAE=CADBAECAD所以正确BAECADBEA=CDAPME=AMDPMEAMDMPMD=MAME所以正确BEA=CDAPME=AMDP、E、D、A四点共圆APD

14、=EAD=90CAE=180-BAC-EAD=90CAPCMAAC2=CPCMAC=AB2CB2=CPCM所以正确故选A点睛:本题考查了相似三角形的性质和判断在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案10、B【分析】首先根据矩形和翻折的性质得出AEDAED,ABEABE,ABE=B=ABD=90,AED=AED,AEB=AEB,BE=BE,进而得出AED=AED=AEB=60,ADE=ADE=ADC=30,判定DBADCA,DC=DB,得出AE,设AB=DC=x,利用勾股定理构建方程,即可得解.【详解】四边形ABCD为矩形,ADC=C=B=90,AB=DC

15、,由翻折知,AEDAED,ABEABE,ABE=B=ABD=90,AED=AED,AEB=AEB,BE=BE,AED=AED=AEB=180=60,ADE=90AED=30,ADE=90AEB=30,ADE=ADE=ADC=30,又C=ABD=90,DA=DA,DBADCA(AAS),DC=DB,在RtAED中,ADE=30,AD=2,AE=,设AB=DC=x,则BE=BE=xAE2+AD2=DE2,()2+22=(x+x)2,解得,x1=(负值舍去),x2=,故答案为B【点睛】本题考查了矩形的性质,轴对称的性质等,解题关键是通过轴对称的性质证明AEDAEDAEB6011、B【分析】由题意直接

16、根据事件发生的可能性大小进行判断即可【详解】解:A、打开电视机,它正在播广告是随机事件;B、a20,a2+11,a取任一个实数,代数式a2+1的值都大于0是必然事件;C、明天太阳从西方升起是不可能事件;D、抛掷一枚硬币,一定正面朝上是随机事件;故选:B【点睛】本题考查的是必然事件、不可能事件、随机事件的概念注意掌握必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件12、D【分析】如果过O作OCAB于D,交折叠前的AB弧于C,根据折叠后劣弧恰好经过圆心O,根据垂径定理及勾股定理即可求出AD的长,进而

17、求出AB的长【详解】解:如图,过O作OCAB于D,交折叠前的AB弧于C, 根据折叠后劣弧恰好经过圆心O,那么可得出的是OD=CD=2,直角三角形OAD中,OA=4,OD=2,AD= AB=2AD= ,故选:D【点睛】本题考查了垂径定理和勾股定理的综合运用,利用好条件:劣弧折叠后恰好经过圆心O是解题的关键二、填空题(每题4分,共24分)13、【解析】在ABC中,C=90,可设BC=4k,AC=3k,由勾股定理可得AB=5k,sinA=,cosA=,sinA+cosA=.故答案为.14、2或1【分析】分两种情况:(1)容器内水的高度在球形容器的球心下面;(2)容器内水的高度在球形容器的球心上面;根

18、据垂径定理和勾股定理计算即可求解【详解】过O作OCAB于C,AC=BC=AB=4cm在RtOCA中,OA=5cm,则OC3(cm)分两种情况讨论:(1)容器内水的高度在球形容器的球心下面时,如图,延长OC交O于D,容器内水的高度为CD=ODCO=53=2(cm);(2)容器内水的高度在球形容器的球心是上面时,如图,延长CO交O于D,容器内水的高度为CD=OD+CO=5+3=1(cm)则容器内水的高度为2cm或1cm故答案为:2或1【点睛】本题考查了垂径定理以及勾股定理,勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方如果直角三角形的两条直角边长分别是a,b,斜边长为

19、c,那么a2+b2=c2注意分类思想的应用15、m且m1【详解】本题考查的是一元二次方程根与系数的关系有实数根则=即1-4(-1)(m-1)0解得m,又一元二次方程所以m-10综上m且m1.16、【分析】根据,可设AC=4x,BC=5x,利用勾股定理可得AB=3x,则.【详解】在RtABC中,设AC=4x,BC=5x故答案为:.【点睛】本题考查求正切值,熟练掌握三角函数的定义是解题的关键.17、60【分析】根据平行四边形性质可得,再根据等腰三角形性质和三角形内角和求出,最后根据直角三角形两锐角互余即可解答【详解】解:四边形是平行四边形,故答案为:60【点睛】本题考查平行四边形的判定、等腰三角形

20、的性质、直角三角形的性质等知识,解题的关键是利用平行四边形的性质以及等腰三角形的性质求出,属于中考常考题型18、6【分析】作EMBC,HNAD,易证得,继而证得,利用等量代换即可求得答案.【详解】过E作EMBC于M,过H作HNAD于N,如图,四边形ABCD为矩形,ADBC, ,四边形ABCD为矩形,且EMBC,HNAD,四边形ABME 、EMHN、NHCD均为矩形,AE=BM,EN=MH,ND=HC,在和中,(HL) ,故答案为:【点睛】本题考查了矩形的判定和性质、直角三角形的判定和性质、平行弦所夹的弧相等、等弧对等弦等知识,灵活运用等量代换是解题的关键.三、解答题(共78分)19、(1)yx

21、2+x+1;(2)D的坐标为(1,1);(1)【分析】(1)通过抛物线y先求出点A的坐标,推出OA的长度,再由tanCAO1求出OC的长度,点C的坐标,代入原解析式即可求出结论;(2)如图2,过点D分别作x轴和y轴的垂线,垂足分别为W和Z,证DZEDWB,得到DZDW,由此可知点D的横纵坐标相等,设出点D坐标,代入抛物线解析式即可求出点D坐标;(1)如图1,连接CD,分别过点C,H作F的垂线,垂足分别为Q,I,过点F作DC的垂线,交DC的延长线于点U,先求出点G坐标,求出直线DG解析式,再求出点F的坐标,即可求出正方形FMND的边长,再求出其对角线FN的长度,最后证点F,K,M,N,D共圆,推

22、出KDNKFN,求出KFN的余弦值即可【详解】解:(1)在抛物线y=中,当y0时,x11,x24,A(1,0),B(4,0),OA1,tanCAO1,OC1OA1,C(0,1),a1,a2,抛物线的解析式为:yx2+x+1;(2)如图2,过点D分别作x轴和y轴的垂线,垂足分别为W和Z,ZDWEDB90,ZDEWDB,DZEDWB90,DEDB,DZEDWB(AAS),DZDW,设点D(k,k2+k+1),kk2+k+1,解得,k1(舍去),k21,D的坐标为(1,1);(1)如图1,连接CD,分别过点C,H作F的垂线,垂足分别为Q,I,sinDGH设HI4m,HG5m,则IG1m,由题意知,四

23、边形OCDH是正方形,CDDH1,CDQ+IDH90,IDH+DHI90,CDQDHI,又CQDDIH90,CQDDIH(AAS),设DIn,则CQDIn,DQHI4m,IQDQDI4mn,GQGIIQ1m(4mn)nm,GCQ+QCD90,QCD+CDQ90,GCQCDQ,GCQCDQ,n2m,CQDI2m,IQ2m,tanCDG,CD1,CG,GOCOCG,设直线DG的解析式为ykx+,将点D(1,1)代入,得,k,yDG,设点F(t,t2+t+1),则t2+t+1t+,解得,t11(舍去),t2,F(,)过点F作DC的垂线,交DC的延长线于点U,则,在RtUFD中,DF,由翻折知,NPM

24、NPT,MNPTNP,NMNTND,TPNMPN,TPMP,又NSKD,DNSTNS,DSTS,SNKTNP+TNS9045,SKN45,TPK180TPN,MPK180MPN,TPKMPK,又PKPK,TPKMPK(SAS),MKPTKP45,DKMMKP+TKP90,连接FN,DM,交点为R,再连接RK,则RKRFRDRNRM,则点F,D,N,M,K同在R上,FN为直径,FKN90,KDNKFN,FN,在RtFKN中,cosKDNcosKFN【点睛】考核知识点:二次函数综合题熟记二次函数基本性质,数形结合分析问题是关键.20、 (1)详见解析;(2)4.【解析】试题分析:(1)连结OD,由

25、AD平分BAC,OA=OD,可证得ODA=DAE,由平行线的性质可得ODAE,再由DEAC即可得OEDE,即DE是O的切线;(2)过点O作OFAC于点F,由垂径定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四边形OFED是矩形,即可得DE=OF=4.试题解析:(1)连结OD,AD平分BAC,DAE=DAB,OA=OD,ODA=DAO,ODA=DAE,ODAE,DEACOEDEDE是O的切线;(2)过点O作OFAC于点F,AF=CF=3,OF=,OFE=DEF=ODE=90,四边形OFED是矩形,DE=OF=4.考点:切线的判定;垂径定理;勾股定理;矩形的判定及性质.21、(1);(2

26、)【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,找出两次摸出的球是红球的结果数,然后根据概率公式求解【详解】(1)从布袋中任意摸出1个球,摸出是红球的概率;故答案为:;(2)画树状图为:共有12种等可能的结果数,其中两次摸到红球的结果数为2,所以张大妈获得两份奖品的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率22、二次函数为,顶点【分析】先设该二次函数的解析式为y=ax2+bx+c(a0),利用待定系数法求a,b,c的值,得到二次函数的解析式,然后化为顶点式,即可得到顶点坐标【详解】解:二次函数的图象经过,可设所求二次函数为,由已知,函数的图象不经过,两点,可得关于、的二元一次方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论