勾股定理及其证明-龙桥镇初级中学-干婷婷课件_第1页
勾股定理及其证明-龙桥镇初级中学-干婷婷课件_第2页
勾股定理及其证明-龙桥镇初级中学-干婷婷课件_第3页
勾股定理及其证明-龙桥镇初级中学-干婷婷课件_第4页
勾股定理及其证明-龙桥镇初级中学-干婷婷课件_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、八年级数学下册(人教版)第十八章 勾股定理勾股定理及其证明龙桥镇初级中学 干婷婷一、创设情境 除地球外,别的星球上有没有生命呢? 自古以来,人类就不断发出这样的疑问,特别是近年来不断出现的UFO事件,更让人们相信有外星人的说法,如果真的有,那我们怎么和他们交流呢? 我国著名数学家华罗庚在多年前曾提出这样的设想:向太空发射一种图形,因为这种图形在几千年前就已经被人类所认识,如果他们是“文明人”,也必定认识这种图形.毕达哥拉斯(公元前572-前492年),古希腊著名的哲学家、数学家、天文学家。相传有一次他在朋友家做客时,发现朋友家用砖铺成的地面中反映了A、B、C三者面积之间的数量关系,进而发现直角

2、三角形三边的某种数量关系我们也来观察右图的地面,你能发现A、B、C面积之间有什么数量关系吗?AB C SA+SB=SC(图中每个小方格是1个单位面积)1.A中含有_个小方格,即A的面积是 个单位面积B的面积是 个单位面积C的面积是 个单位面积99189探究一:你能发现图1中正方形A、B、C的面积之间有什么数量关系吗?二、实验探究ABC图1结论:图1中三个正方形A,B,C的面积之间的数量关系是:SA+SB=SC探究二:SA+SB=SC在图2中还成立吗?ABC图2结论:仍然成立。A的面积是 个单位面积B的面积是 个单位面积C的面积是 个单位面积25169 你是怎样得到正方形C的面积的?与同伴交流交

3、流(图中每个小方格是1个单位面积)ABC问题2:式子SA+SB=SC能用直角三角形的三边a、b、c来表示吗?问题4:那么直角三角形三边a、b、c之间的关系式是:abc 至此,我们在网格中验证了:直角三角形两条直角边上的正方形面积之和等于斜边上的正方形面积,即SA+SB=SCa2 + b2 = c2a2 + b2 = c2问题1:去掉网格结论会改变吗?问题3:去掉正方形结论会改变吗? 是不是所有的直角三角形都具有这样的结论呢?光靠实验和猜想还不能把问题彻底搞清楚。 这就需要我们对一般的直角三角形进行证明下面我们就一起来探究,看一看我国古代数学家赵爽是怎样证明这个命题的三、拼图证明黄实朱实朱实朱实

4、朱实b a MNP剪、拼过程展示:“赵爽弦图”表现了我国古人对数学的钻研精神和聪明才智,是我国古代数学的骄傲。因此,当 2002年第24届国际数学家大会在北京召开时, “赵爽弦图”被选作大会会徽。 现在,我们已经证明了命题1的正确性,在数学上,经过证明被确认为正确的命题叫做定理,所以命题1在我国叫做勾股定理。勾股定理:如果直角三角形两直角边长分别为a、b,斜边长为c,那么 a2 + b2 = c2即:直角三角形两直角边的平方和等于斜边的平方。 为什么叫勾股定理这个名称呢?原来在中国古代,人们把弯曲成直角的手臂的上半部分称为“勾”,下半部分称为“股”。于是我国古代学者就把直角三角形中较短直角边称

5、为“勾”,较长直角边称为“股”,斜边称为“弦”.由于命题1反映的正好是直角三角形三边的关系,所以叫做勾股定理。勾股国外又叫毕达哥拉斯定理其他证明方法印度婆什伽罗的证明法 勾股定理是几何学中的明珠,它充满了无穷的魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家、画家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。有资料表明,关于勾股定理的证明方法已有500余种。直接观察验证法总统法华罗庚:青朱出入图等 . .总统法aabbcc青出朱方青方朱入朱出青入青入青出青出华罗庚:青朱出入图1、求下列图中字母所表示的正方形的面积.=625225400A22581B=144四、反馈评价2、如图,受台风影响,一棵树在离地面4米处断裂,树的顶部落在离树跟底部3米处,这棵树折断前有多高?4米3米3、求下列直角三角形中未知边的长.6x101213x1.必做题:课本第70页,习题18.1 第2、3、4题.2.选做题:(1)课本第71页“阅读与思考”,了解勾股定理的多种证法.(2)上网查阅了解勾股定理的有关知识并写一篇小论文.六、课后作业说不定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论