word版2022年江苏省常州市金坛区水北中学中考二模数学试题(附答案)_第1页
word版2022年江苏省常州市金坛区水北中学中考二模数学试题(附答案)_第2页
word版2022年江苏省常州市金坛区水北中学中考二模数学试题(附答案)_第3页
word版2022年江苏省常州市金坛区水北中学中考二模数学试题(附答案)_第4页
word版2022年江苏省常州市金坛区水北中学中考二模数学试题(附答案)_第5页
已阅读5页,还剩60页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022年中考模拟试卷(二)数学(满分:120分考试时间:120分钟)注意:本卷有试题卷和答题卡两个部分,考生必须将答案书写在答题卡上,写在试卷上的一律无效一、选择题(本题共8小题,每小题2分,共16分,在每小题所给的四个选项中,只有一个选项是正确的)1. 一5的绝对值是( )A. 5B. C. D. 5【答案】A【解析】【详解】试题分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点5到原点的距离是5,所以5的绝对值是5,故选A2. 计算(x5)2的结果是()A. x3B. x7C. x10D. x25【答案】C【解析】【分析】直接运用幂的乘方运算法则进行计算即可【详解】

2、解:(x5)2x52x10故选:C【点睛】本题考查了幂的乘方运算,熟记幂的乘方运算法则:底数不变,指数相乘是解题关键3. 如图,根据三视图,这个立体图形的名称是( )A. 三棱柱B. 圆柱C. 三棱锥D. 圆锥【答案】A【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状【详解】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱故选:A【点睛】本题由物体的三种视图推出原来几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力和综合能力4. 下列无理数,与3最接近的是( )A. B. C. D. 【答案】C【解析】【

3、分析】先比较各个数平方后的结果,进而即可得到答案【详解】解:32=9,()2=6,()2=7,()2=10,()2=11,与3最接近的是,故选C【点睛】本题主要考查无理数的估计,理解算术平方根与平方的关系,是解题的关键5. 如图,在ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE4,EC2,则BC的长是()A. 2B. 4C. 6D. 8【答案】C【解析】【分析】根据线段的垂直平分线的性质得到EBEA4,结合图形计算,得到答案【详解】解:DE是AB的垂直平分线,AE4,EBEA4,BCEBEC426,故选:C【点睛】本题考查的是线段的垂直平分线的性质,解题的关键是掌握线段

4、的垂直平分线上的点到线段的两个端点的距离相等6. 如图,直线,将一个含角的三角尺按如图所示的位置放置,若,则的度数为( )A. B. C. D. 【答案】C【解析】【分析】根据平行线的性质求解,找出图中,进而求出3,再根据平行线性质求出2即可【详解】解:如图,作,三角尺是含角的三角尺,故选:C【点睛】此题考查平行线的性质,利用平行线性质求角,涉及到直角三角形两个余角的关系7. 如图,点在边上,与边相切于点,交边于点,连接,则等于()A. B. C. D. 【答案】A【解析】【分析】连接OD,由O与边AC相切于点D,得ODA=90,从而可求出AOD=54,即可得AFD=27【详解】解:连接OD,

5、如图:O与边AC相切于点D,ODA=90,BAC=36,AOD=90-36=54,OD=OF,AFD=ODF,AFD=AOD=27,故选:A【点睛】本题考查求圆中的角,涉及圆的切线的性质及应用,解题的关键是掌握切线的性质,求出AOD=548. 如图,在矩形中,点P在线段上运动(含B、C两点),连接,以点A为中心,将线段逆时针旋转60到,连接,则线段的最小值为()A. B. C. D. 3【答案】A【解析】【分析】根据题中条件确定出点的轨迹是线段,则线段的最小值就转化为定点到点的轨迹线段的距离问题【详解】解:与固定夹角是,点的轨迹是线段,的轨迹也是一条线段 两点确定一条直线,取点分别与重合时,所

6、对应两个点Q,来确定点的轨迹,得到如下标注信息后的图形:求的最小值,转化为点到点的轨迹线段的距离问题,,在中,,,将逆时针绕点转动后得到,为等边三角形,,为的中点,根据三线合一知,,过点作的垂线交于点,在中,对应的边等于斜边的一半,的最小值为,故选:A【点睛】本题考查了动点问题中,两点间距离的最小值问题,解题的关键是:需要确定动点的轨迹,才能方便找到解决问题的突破口二、填空题(本题共10小题,每小题2分,共20分)9. 的立方根是_【答案】3【解析】【分析】根据立方根的定义求解即可【详解】解:27的立方根是3,故答案为:3【点睛】本题考查了立方根的定义,属于基础题型,熟知立方根的概念是解题的关

7、键10. 化简求值_【答案】1【解析】【分析】直接利用完全平方公式以及单项式乘多项式分别化简,进而合并同类项即可求出答案【详解】解:原式x22x1x2+2x=1,故答案为:1【点睛】此题主要考查了整式的混合运算,正确运用整式乘法运算是解题关键11. 使有意义的的取值范围是_【答案】【解析】【分析】根据二次根式的被开方数是非负数列出不等式,解不等式即可求得的取值范围【详解】解:根据题意得,解得故答案为:【点睛】本题考查了二次根式有意义的条件,解题的关键是利用被开方数是非负数得出不等式12. 分解因式:=_【答案】【解析】【分析】先提取公因式a,再利用平方差公式即可【详解】=故答案:【点睛】本题考

8、查分解因式综合提公因式和公式法分解因式是解题的关键13. 2021年5月15日我国天问一号探测器在火星预选着陆区着陆,在火星上首次留下中国印迹,迈出我国星际探测征程的重要一步目前探测器距离地球约320000000千米,320000000这个数据用科学记数法可表示为_【答案】3.2108【解析】【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同【详解】解:320000000=3.2108,故答案是:3.2108【点睛】此题考查科学记数法的表示方法,关键是确定a的值以及n的值14. 圆锥的母

9、线长为,底面圆的半径长为,则该圆锥的侧面积为_【答案】【解析】【分析】利用圆锥的底面半径为1,母线长为2,直接利用圆锥的侧面积公式求出即可【详解】解:依题意知母线长=2,底面半径r=1,则由圆锥的侧面积公式得S=rl=12=2故答案为:2【点睛】此题主要考查了圆锥侧面面积的计算,熟练记忆圆锥的侧面积公式是解决问题的关键15. 一个小球在如图所示的地面上自由滚动,并随机地停留在某块方砖上,则小球停留在黑色区域的概率是_【答案】【解析】【分析】求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论【详解】解:由图可知:黑色方砖有8个小三角形,每4个三角形是大正方形面积的黑色方砖在整个地板中所

10、占的比值,小球最终停留在黑色区域的概率,故答案为:【点睛】本题主要考查了简单的概率计算,解题的关键在于能够准确找出黑色方砖面积与整个区域面积的关系.16. 图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD的对角线BD上,时钟中心在矩形ABCD对角线的交点O上若,则BC长为_cm(结果保留根号)【答案】【解析】【分析】根据题意即可求得MOD=2NOD,即可求得NOD=30,从而得出ADB=30,再解直角三角形ABD即可【详解】解:时钟数字2的刻度在矩形ABCD的对角线BD上,时钟中心在矩形ABCD对角线的交点O,MOD=2NOD,MOD+NOD=90,NOD=30,四边形AB

11、CD是矩形,AD/BC,A=90,AD=BC,ADB=NOD=30,故答案为:【点睛】本题考查的矩形的性质、解直角三角形等知识;理解题意灵活运用所学知识得出NOD=30是解题的关键17. 已知在由10个完全相同的正三角形构成的网格图中,、如图所示,则_【答案】#【解析】【分析】连接DE,利用等腰三角形的性质及三角形内角和定理可得出=30,同理可得出:CDE=CED=30=,由AEC=60结合AED=AEC+CED可得出AED=90,设等边三角形的边长为a,则AE=2a,DE=a,由三角函数定义即可得出答案【详解】解:连接DE,如图所示:在ABC中,ABC=120,BA=BC,=30,同理得:C

12、DE=CED=30=又AEC=60,AED=AEC+CED=90设等边三角形的边长为a,则AE=2a,DE=2sin60a=a,tan(+)= =故答案为:【点睛】此题考查解直角三角形、等边三角形的性质以及图形的变化规律,构造出含一个锐角等于+的直角三角形是解题的关键18. 如图,中,四边形是正方形,点D是直线上一点,且P是线段上一点,且过点P作直线l于平行,分别交,于点G,H,则的长是_【答案】或【解析】【分析】结合勾股定理逆定理判断是直角三角形,通过证明,然后利用相似三角形的性质求解,然后分当点位于点左侧时,当点位于点右侧时,进行分类讨论【详解】解:中,为直角三角形,当点位于点左侧时,如图

13、:设直线交于点,又四边形是正方形,且,即,解得:,解得:,解得:;当点位于点右侧时,如图:与同理,此时,解得:,综上,的长为或,故答案为:或【点睛】本题考查勾股定理逆定理,相似三角形的判定和性质,理解题意,证明出,特别注意分类思想的运用是解题关键三、解答题(本题共10小题,共84分)19. 计算:【答案】【解析】【分析】根据特殊三角函数值、零次幂及二次根式的运算可直接进行求解【详解】解:原式=【点睛】本题主要考查特殊三角函数值、零次幂及二次根式的运算,熟练掌握特殊三角函数值、零次幂及二次根式的运算是解题的关键20. (1)解方程;(2)解不等式组:【答案】(1);(2)【解析】【分析】(1)先

14、把分式方程转化成整式方程,求出方程的解,再进行检验即可;(2)先求出不等式的解集,再求出不等式组的解集即可【详解】解:(1)去分母,得解得,经检验,是原方程的解,所以原方程的解为(2)解不等式,得,解不等式,得,则不等式组解集为.【点睛】本题考查了解一元一次不等式组和解分式方程,能根据不等式的解集找出不等式组的解集是解(2)的关键,能把分式方程转化成整式方程是解(1)的关键21. 为庆祝建党100周年,某校开展“学党史颂党恩”的作品征集活动,征集的作品分为四类:征文、书法、剪纸、绘画学校随机抽取部分学生的作品进行整理,并根据结果绘制成如下两幅不完整的统计图请根据以上信息解答下列问题:(1)所抽

15、取的学生作品的样本容量是多少?(2)补全条形统计图(3)本次活动共征集作品1200件,估计绘画作品有多少件【答案】(1)120;(2)图形见解析;(3)360件【解析】【分析】(1)根据剪纸的人数除以所占百分比,得到抽取作品的总件数;(2)由总件数减去其他作品数,求出绘画作品的件数,补全条形统计图即可;(3)求出样本中绘画作品的百分比,乘以1200即可得到结果【详解】解:(1)根据题意得:(件),所抽取的学生作品的样本容量是120;(2)绘画作品为(件),补全统计图,如图所示:(3)根据题意得:(件),则绘画作品约有360件答:本次活动共征集作品1200件时,绘画作品约有360件【点睛】本题主

16、要考查了总体、个体、样本、样本容量,用样本估计总体,条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小22. 2022北京冬奥会和冬残奥会的吉祥物是“冰墩嫩”和“雪容融”在一次宣传活动中,组织者将分别印有这两种吉祥物图案的卡片各2张放在一个不透明的盒子中并搅匀,卡片除图案外其余均相同小张从中随机抽取2张换取相应的吉祥物,采用的抽取方式是先抽取1张不放回,再抽取1张(1)第一张抽到“冰墩墩”的概率是_;(2)求小张抽到不同图案卡片的概率【答案】(1)(2)【解析】【分析】(1

17、)根据概率公式直接计算即可;(2)画出树状图,共有12种等可能的结果,小张抽到不同图案卡片的结果有8种,再由概率公式求解即可.【小问1详解】解:4张当中抽一张,是冰墩墩的概率是,故答案为:【小问2详解】解:把“冰墩墩”和“雪容融”两种吉祥物分别记为A,B,画树状图如图:共有12种等可能的结果,小张抽到不同图案卡片的结果有8种,抽到不同图案卡片的概率为【点睛】此题考查的是列表法或树状图法求概率.列表法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.23. 如图,是的边上一点, 交于点,(1)求证:;(2)若,求的长【答案】(1)证明见详解;(2)

18、1【解析】【分析】(1)根据证明即可;(2)根据(1)可得,即由,根据求解即可【详解】(1)证明:,在和中,;(2)由(1)得【点睛】本题考查全等三角形的判定和性质、平行线的性质等知识,熟练掌握基本知识是解题的关键24某班计划购买两种毕业纪念册,已知购买1本手绘纪念册和4本图片纪念册共需135元,购买5本手绘纪念册和2本图片纪念册共需225元(1)求每本手绘纪念册和每本图片纪念册的价格分别为多少元?(2)该班计划购买手绘纪念册和图片纪念册共40本,总费用不超过1100元,那么最多能购买手绘纪念册多少本?【答案】(1)每本手绘纪念册35元,每本图片纪念册25元;(2)最多能购买手绘纪念册10本【

19、解析】【分析】(1)设每本手绘纪念册x元,每本图片纪念册y元,根据题意列出二元一次方程组,求解即可;(2)设购买手绘纪念册a本,则购买图片纪念册本,根据题意列出不等式,求解不等式即可【详解】解:(1)设每本手绘纪念册x元,每本图片纪念册y元,根据题意可得:,解得,答:每本手绘纪念册35元,每本图片纪念册25元;(2)设购买手绘纪念册a本,则购买图片纪念册本,根据题意可得:,解得,最多能购买手绘纪念册10本【点睛】本题考查二元一次方程组的应用、不等式的实际应用,根据题意列出方程组和不等式是解题的关键25. 如图,反比例函数上的图象与一次函数的图象相交于,两点(1)求反比例函数和一次函数的解析式;

20、(2)设直线交y轴于点C,点是正半轴上的一个动点,过点N作轴交反比例函数的图象于点M,连接,若,求t的取值范围【答案】(1),;(2)【解析】【分析】(1)先根据点的坐标,利用待定系数法可得反比例函数的解析,从而可得点的坐标,再根据点的坐标,利用待定系数法可得一次函数的解析式;(2)先根据一次函数解析式求出点的坐标,根据反比例函数的解析式求出点的坐标,再根据建立不等式,解不等式即可得【详解】解:(1)将点代入得:,则反比例函数的解析式为;当时,解得,即,将点代入得:,解得,则一次函数的解析式为;(2)对于一次函数,当时,即,轴,且,解得【点睛】本题考查了反比例函数与一次函数的综合,熟练掌握待定

21、系数法是解题关键26. 如图,在中,点D为边AC的中点动点P从点A出发,沿折线ABBC以每秒1个单位长度的速度向点C运动,当点P不与点A、C重合时,连结PD作点A关于直线PD的对称点,连结、设点P的运动时间为t秒(1)线段AD的长为(2)用含t的代数式表示线段BP的长(3)当点在内部时,求的取值范围(4)当与相等时,直接写出的值【答案】(1)2;(2)BP=5-t或者BP=t-5;(3);(4)或【解析】【分析】(1)根据勾股定理求出AC的长,再根据点D为AC的中点,得到结果;(2)由AP=t,AB=5,得出结论;(3)分情况计算出两个临界值,当点在AB上时,DPAB,APDACB,根据对应边

22、成比例求出,当点在AC上时,PDAC,点A与点C重合,ADPACB,根据对应边成比例求出,最后得出结论;(4)根据要求画出图形,利用折叠全等与两角对应相等,两三角形相似,证明出三角形相似,再根据对应边成比例计算出各边的长,最后得到结果【详解】解:(1)C=90,点D为边AC的中点,AD=2;(2)当点P在AB上时,AP=t,AB=5,BP=5-t,当点P在BC上时,BP=t-5,BP=t-5或者BP=5-t ,(3)如图,当点在AB上时,DPAB,APDACB,如图,当点在AC上时,PDAC,点A与点C重合,ADPACB,当点在内部时,(4)如图,点A关于直线PD的对称点,DEAA,ADEAD

23、E,ABC=DAE,ACB=DEA,ABCDAE,DA=DA=2,AC=4,BC=3,AB=5,ABCDAE,EDA=ADE=CAB,AP=DP=t,如图,点A关于直线PD的对称点,PEAA,ADEADE,ABC=DAE,ACB=DEA,ABCDAE,DA=DA=2,AC=4,BC=3,AB=5,DEA=DCP,C=DEA,DEADCP,或【点睛】本题主要考查了直角三角形中的动点问题、相似三角形的判断与性质、勾股定理,解题关键在于根据题意画出图形,再根据两角对应相等,两三角形相似证明三角形相似,再结合勾股定理求出结论27. 面对新冠疫情,中国举全国之力采取了很多强有力的措施,将疫情及时控制,其

24、中对感染者和接触者进行隔离治疗和观察有效地控制住病毒的传播,数学中为对两个图形进行隔离,在平面直角坐标系中,对“隔离直线”给出如下定义:点是图形上的任意一点,点是图形上的任意一点,若存在直线满足且,则称直线l:是图形与的“隔离直线”例如:如图1,直线l:是函数图象与正方形的一条“隔离直线”(1)在直线,中,是图1函数的图象与正方形OABC的“隔离直线”的为_;(2)如图2,第一象限的等腰直角三角形EDF的两腰分别与坐标轴平行,直角顶点D的坐标是,与O的“隔离直线”有且只有一条,求出此“隔离直线”的表达式;(3)正方形的一边在y轴上,其它三边都在y轴的右侧,点是此正方形的中心若存在直线是函数的图

25、象与正方形的“隔离直线”,求t的取值范围【答案】(1)(2)(3)或【解析】【分析】(1)根据定义,结合图象,可判断出与双曲线及正方形最多有一个公共点的的直线为;(2)先作出以原点为圆心且经过的顶点的圆,再过点作的切线,求出该直线的解析式即可;(3)先由抛物线与直线组成方程组,则该方程组有唯一一组解,再考虑直线与正方形有唯一公共点的情形,数形结合,分类讨论,求出的取值范围【小问1详解】解:根据“隔离直线”定义可知,直线是双曲线与正方形的“隔离直线”,故答案为:【小问2详解】解:如图1,连接,以为圆心,长为半径作,作轴于点,过点作的切线,则,直线是与的“隔离直线”,设直线的解析式为,则,解得,与

26、的“隔离直线”是;【小问3详解】解:由,得,直线与抛物线有唯一公共点,解得,此时的“隔离直线”为当正方形在直线下方,如图2,由顶点不能在直线上方,得解得;当正方形在直线上方,如图3对于抛物线,当时,;当时,直线恰好经过点和点;对于直线,当时,由不能在直线下方,得,解得,综上所述,或【点睛】此题重点考查定义新函数的有关内容,解题的关键是理解定义内涵,数形结合来求解28. 如图1,二次函数图象交坐标轴于点,点为轴上一动点(1)求二次函数的表达式;(2)过点作轴分别交线段,抛物线于点,连接当时,求的面积;(3)如图2,将线段绕点逆时针旋转90得到线段当点在抛物线上时,求点的坐标;点在抛物线上,连接,

27、当平分时,直接写出点P的坐标【答案】(1);(2);(3)或;或【解析】【分析】(1)根据点的坐标以及已知条件,将的坐标代入即可求得的值,进而求得抛物线的解析式;(2)依题意根据(1)的解析式求得的坐标,进而求得,据此求得,根据进而求得的坐标,根据即可求得的面积;(3)过作轴,分点在轴上方和下方两种情况讨论,证明,设,将点的坐标代入(1)中抛物线解析式中即可求得点的坐标情形2,方法同情形1;分当不平行于轴和轴两种情况讨论,当当不平行于轴时,过点作交于点,过点作于点,证明进而可得的坐标,当轴时,结合已知条件即可求得的坐标【详解】(1)二次函数的图象经过解得(2)由,令解得当时,,则;(3)如图,

28、当点在轴下方时,过点作于点,由,令,解得,将线段绕点逆时针旋转90得到线段,设,点在抛物线上,解得(舍)当点在轴上方时,如图,过点作于点,设同理可得点在抛物线上,解得(舍去),综上所述,或;当不平行于轴时,过点作交于点,过点作于点,如图,平分,,,当不平行于轴时,重合,当轴时,如图,此时则综上所述,当平方时,点的坐标为或【点睛】本题考查了待定系数法求二次函数解析式,二次函数与坐标轴交点,正切的定义,三角形全等的性质与判定,分类讨论是解题的关键2022年市南一模数学试题一、选择题(本题满分24分,共有8道小题,每小题3分)1. 的倒数是()A. B. C. D. 【答案】A【解析】【分析】根据倒

29、数的定义求解即可【详解】解:的倒数是故答案选:A【点睛】本题考查了倒数的定义解题的关键是掌握倒数的定义,1除以这个数的商就是这个数的倒数2. 下列四个图案中是轴对称图形的个数是()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】这4个图形各自沿着某条直线对折,直线两旁的部分能够完全重合,都是轴对称图形【详解】第二个,第四个是轴对称图形故选B【点睛】本题考查了轴对称图形,熟练掌握轴对称图形的定义,是解决此类问题的关键3. 由一些相同小立方块组成的几何体的三种视图如图所示,则组成这个几何体的小立方块的个数是()A. 4个B. 5个C. 6个D. 7个【答案】D【解析】【分析】根据

30、三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列两层,由此结合图形即可得【详解】解:由题意可得该几何体共有两行三列,底层应该有326个小正方体,第二层第一列第二行有1个小正方体,共有6+1=7个小正方体,故选D【点睛】本题考查由三视图还原立体图形,掌握三视图所看的位置和定义准确把握观察角度是解题关键4. 为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取的42名学生收集废旧电池数量的统计表:废旧电池数/节4567人数/人912129请根据学生收集到的废旧电池数,判断下列说法正确的是()A. 样本为42名学生B. 众数是9节和12节C. 中位数是6节D

31、. 平均数是5.5节【答案】D【解析】【分析】根据样本定义可判定A,利用众数定义可判定B,利用中位数定义可判定C,利用求平均数的公式计算可判定D【详解】解:随机抽取42名学生收集废旧电池的数量是样本,故选项A错误;根据众数定义重复出现次数最多的数据是5节或6节,故选项B错误;根据中位数定义,由样本容量为42,则中位数为按顺序排列的第21和第22两个位置数据的平均数,第21位、第22位两个数据为5节与6节,故中位数为节,故选项C错误;样本平均数节,故选项D正确故选D【点睛】本题考查样本,众数,中位数,平均数熟练掌握样本、众数、中位数的定义,求平均数的公式是解题关键5. 北京冬奥会于2022年2月

32、4日在中华人民共和国国家体育场举行在此期间,国家体育总局委托国家统计局开展的“带动三亿人参与冰雪运动”统计调查数据显示,全国居民参与过冰雪运动的人数为346000000人,将346000000用科学记数法表示为()A. 3.46107B. 3.46108C. 34.6108D. 3.461010【答案】B【解析】【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正整数;当原数的绝对值1时,n是负整数【详解】解:将346000000用科学记数法表示为34600000

33、0=3.46108故选择为:B【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值6. 如图,以某网格线所在直线建立平面直角坐标系,将ABC绕点P旋转180得到DEF,已知点A(2,-1),点P的坐标为()A. (-2,2)B. (2,-2)C. (1,-3)D. (-3,1)【答案】C【解析】【分析】先根据点A作标,利用平移找到坐标原点,建立平面直角坐标系,确定点D的坐标,然后根据旋转性质,点P为AD的中点,利用中点坐标公式求解即可【详解】根据点A(2,-1)先作平移两个单位,再向上平移一个单位得坐标原点,

34、建立如图平面直角坐标系,点D(0,-5),点P是旋转中心,P是AD连线的中点,P点的横坐标为,纵坐标为,点P坐标为(1,-3)故选择C【点睛】本题考查图形与坐标,平移性质,旋转性质,掌握图形与坐标,平移性质,旋转性质是解题关键,本题难度不大是常考题7. 如图,AB是O的直径,点C、D是圆上的两点,若AOC=116,则CDB的度数为()A. 32B. 22C. 37D. 27【答案】A【解析】【分析】根据直径所对圆周角性质得出ADB=90,根据圆周角定理得出ADC=AOC=58,然后利用余角性质求解即可【详解】解:连结AD,AB为直径,ADB=90,AOC=116,ADC=AOC=58,CDB=

35、90-ADC=90-58=32故选:A【点睛】此题考查了圆周角定理直径所对圆周角性质,余角性质,注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半8. 已知点M(-1,1)与反比例函数的图像如图所示,则二次函数的图像大致为()A. B. C. D. 【答案】C【解析】【分析】先由反比例函数的图象确定k的范围,根据点M,确定,再利用二次函数的性质进行判断即可.【详解】解:根据题意,反比例函数的图象在二、四象限,所以k0,M(-1,1)不在双曲线上,且,2k0,抛物线的开口向下,对称轴为:直线,抛物线的对称轴在y轴的左侧,抛物线与y轴的交点为(0,),在y轴的正半轴上交

36、点在1的下方;观察各选项,只有C符合故选:C【点睛】本题考查了反比例函数与二次函数的图象和性质,属于常考题型,熟练掌握二次函数的图象与性质是关键二、填空题(本题满分18分,共有6道小题,每小题3分)9. 计算3的结果是_【答案】1【解析】【分析】按照二次根式乘除运算法则和运算顺序进行计算即可【详解】解:原式1故答案为:1【点睛】本题考查了二次根式的乘除,解题关键是熟记二次根式乘除法则,准确进行计算10. 林业部门要观察某种树苗在一定条件下的移植成活率,下表是这种树苗在移植过程中的一组数据:移植的棵数n10001500250040008000150002000030000成活的棵数m853135

37、6222035007056131701758026400成活的频率08530.9040.8880.8750.8820.8780.8790.880根据以上数据,该林业部门估计在此条件下移植的55000棵树苗成活的棵数约为_【答案】48400【解析】【分析】大量重复实验的情况下,当频率呈现一定的稳定性时,可以用这一稳定值估计事件发生的概率,据此可解【详解】解:大量重复实验的情况下,当频率呈现一定的稳定性时,可以用这一稳定值估计事件发生的概率,从上表可以看出,频率成活的频率=,即稳定于0.880左右,该林业部门估计在此条件下移植的55000棵树苗成活的棵数约为550000.88=48400棵故答案为

38、:48400【点睛】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率11. 如图,在O中,弦CD与直径AB平行,CD=OA=2,则阴影部分的面积为_【答案】#【解析】【分析】连接OC,AD,OD,OD交AC于点P由题意可证明四边形AOCD为菱形,且从而可得出AD=CD,AC与OD互相垂直平分,进而可得出线段AD与劣弧围成的面积=线段CD与劣弧围成的面积,即再求出的值,即得出答案【详解】解:如图,连接OC,AD,OD,OD交AC于点PCD=OA,四边形AOCD为平行四边形OA=OC,平行四边形AOCD为菱形,AD=CD,AC与OD互相垂直平分,且线段AD与劣弧围成的面积=线段CD与

39、劣弧围成的面积,如图CD=OA=2,故答案为:【点睛】本题主要考查不规则图形的面积,菱形的判定和性质,等边三角形的判定和性质等知识正确作出辅助线,理解是解题关键12. 某海洋养殖场每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖场第一年的可变成本为2.6万元,第三年的养殖成本为7.146万元,设可变成本平均每年增长的百分率为x,则可列方程为_【答案】【解析】【分析】根据题意可求出第三年的可变成本为(7.146-4)万元,再用x表示出第三年的可变成本,即可列出等式,即得出答案【详解】设可变成本平均每年增长的百分率为x,则可列方程为:故答案为:【点睛】

40、本题考查由实际问题抽象出一元二次方程理解题意,找出等量关系,列出等式是解题关键13. 如图,在正方形ABCD的边长为6,对角线AC、BD相交于点O,点E、F分别在BC、CD的延长线上,且CE=3,DF=2,G为EF的中点,连接OE,交CD于点H,连接GH,则GH的长为_【答案】【解析】【分析】作OKBC,垂足为点K,作GMCD,垂足为点M根据相似三角形的判定和性质,可求出CH和MG的长,再求出MH的长,最后利用勾股定理求解即可【详解】解:如图,作OKBC,垂足为点K,作GMCD,垂足为点M,OKBC,ABBC,正方形边长为6,OK=3,KC=3,KC=CE,即C为KE中点又,CH=OK=,又G

41、点为EF中点,即,GM=CE=,MC= MF=FC=(CD+DF)=(6+2)=4,MH=MCHC=4=在RtMHG中,故答案为:【点睛】本题综合考查了正方形的性质、相似三角形的判定和性质、勾股定理等内容解决本题的关键是能作出辅助线构造相似三角形14. 二次函数(a、b、c实常数,且a0)的函数值y与自变量x的部分对应值如下表:x-1012ym22n且当时,对应的函数值y0有以下结论:abc0;m+n;关于x的方程的负实数根在和0之间;P1(t-1,y1)和P2(t+1,y2)在该二次函数的图象上,则当实数t时,y1y2其中正确的结论是_【答案】【解析】【分析】将点(0,2)与点(1,2)代入

42、解析式可得到a、b互为相反数,c=2,即可判断;将x=-1与x=2代入解析式得到m和n的表达式,再结合时,对应的函数值y0,即可表示出m+n的取值范围;根据点(1,2)与当时,对应的函数值y0可知方程的正实数根在1和2之间,结合抛物线的对称性即可求出方程的负实数根的取值范围;分类讨论,当P1在抛物线的右侧时,P1的横坐标恒大于等于对称轴对应的x的值时必有y1y2,求出对应的t即可;当P1与P2在抛物线的异侧时,根据抛物线的性质当P1的横坐标到对称轴的距离小于P2到对称轴的距离时满足y1y2,求出对应的t即可【详解】将点(0,2)与点(1,2)代入解析式得:,abc0,故错误;由得二次函数解析式

43、为将点(-1,m)与点(2,n)分别代入解析式得:m=n=2a+2,m+n=4a+4当时,对应的函数值y0,解得:,故正确;函数过点(1,2)且当时,对应的函数值y0,方程的正实数根在1和之间,抛物线过点(0,2)与点(1,2),结合抛物线的对称性可得抛物线的对称轴为直线,结合抛物线的对称性可得关于x的方程的负实数根在和0之间,故正确;函数过点(1,2)且当时,对应的函数值y0,可以判断抛物线开口向下,当P1在抛物线的右侧时,P2恒在抛物线的右侧,此时恒成立,P1的横坐标大于等于对称轴对应的x,即t1,解得:t即t时,;当P1与P2在抛物线的异侧时,根据抛物线的性质当P1的横坐标到对称轴的距离

44、小于P2到对称轴的距离时满足,即当时,满足,解得,即时,综上当时,故错误故答案为:【点睛】本题主要考查二次函数的相关性质,解题的关键是能通过图表所给的点以及题目的信息来判断抛物线的开口方向以及对称轴,结合二次函数的图象的性质来解决对应的问题三、作图题(本题满分4分)15. 如图,已知RtABC,C=90;求作:一个面积最大的等腰直角CDE,使等腰直角三角形的斜边CE在边BC上【答案】作图见解析【解析】【分析】当B点与E点重合时,等腰直角CDE面积最大由此即可作线段BC的垂直平分线与BC交于点O,再以O为圆心,OC长为半径作弧,与线段BC的垂直平分线的交点即为点D(或),最后连接CD(或)、BD

45、(或)即可【详解】如图,(或)即为所作【点睛】本题考查作图等腰直角三角形,线段垂直平分线的性质,等腰直角三角形的性质掌握作线段垂直平分线的方法和等腰直角三角形的性质是解题关键四、解答题(本题满分74分,共有9道小题)16. 计算(1)化简:;(2)解不等式组,并求出所有非负整数解【答案】(1)(2)不等式组的解集为,x=0,1,2,3【解析】【分析】(1)先通分,同时把除化为乘法,再因式分解,然后约分即可;(2)把双边不等式化为不等式组,解每个不等式,再求其公共解,在公共解中找出非负整数解即可【小问1详解】解:=;【小问2详解】,解不等式得,解不等式得,不等式组的解集为,x为所有非负整数,x=

46、0,1,2,3【点睛】本题考查分式化简,不等式组解法,掌握分式乘除混合运算法则,不等式组的解法是解题关键17. 小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为:1、2、4的三个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字若两次数字之和为奇数,则小颖胜;若两次数字之和为偶数,则小丽胜试分析这个游戏对双方是否公平?请用树状图或列表法说明理由【答案】不公平,理由见解析【解析】【分析】列表得出所有等可能的情况数,找出和为奇数与和为偶数的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否【详解】解:根据题意可列表如下:和12412352346456

47、8由表格可知,共有9种等可能结果,其中和为奇数的有4种结果,和为偶数的有5种结果,游戏对双方不公平【点睛】此题考查了游戏公平性,列表法或画树状图法求概率判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平18. 某市在全市中学开展了以“预防新冠,人人有责”为主题的知识竞赛活动为了解学生在此次竞赛中的成绩情况,某校随机抽取了部分学生的竞赛成绩进行统计(满分:100分,等次:A.优秀:90100分;B.良好:8089分;C.一般:6079分;D.较差:60分以下,成绩均为整数)得到如下不完整的图表:等次频数频率Am0.25Bn0.5C30bD200.1根据以上信息解答下列问题:(1)

48、该校本次被抽查的学生共有多少人?(2)补全图中条形统计图;(3)若该校共有学生2300人,请根据上述调查结果估计该校学生成绩在良好及以上的学生约有多少人?(写出计算过程)【答案】(1)200人(2)A.优秀: m=50,B.良好:n=100,补画条形图见详解(3)学生成绩在良好及以上的学生约有1725人【解析】【分析】(1)先从条形图求出D的人数,由统计表求D的百分比,用D的人数D的百分比即可;(2)用A的百分比200=m,B的百分比200=n,可补画条形图;(3)求出良好以上的人数200该校学生总数即可【小问1详解】解:由条形图可知D较差有20人,由统计表可得D较差占0.1,该校本次被抽查的

49、学生为:200.1=200人,【小问2详解】解:A.优秀:m=2000.25=50人,B.良好:n=2000.5=100人,补画条形图如图小问3详解】解:良好以上的频数为50+100=150人,占样本的百分比为,该校共有学生2300人,学生成绩在良好及以上的学生约有230075%=1725人【点睛】本题考查样本的容量,从统计表和条形图获取信息和处理信息,求条形图相关数据,补画条形图,用样本的百分比含量估计总体的数量,掌握样本的容量,从统计表和条形图获取信息和处理信息,求条形图相关数据,补画条形图,用样本的百分比含量估计总体的数量是解题关键19. 如图,斜坡AB的坡角为33,BCAC,现计划在斜

50、坡AB中点D处挖去部分坡体,用于修建一个平行于水平线CA且长为12m的平台DE和一条坡角为45的新的陡坡BE建筑物GH距离A处36米远(即AG为36米),小明在D处测得建筑物顶部H的仰角为36图中各点均在同一个平面内,且点C、A、G在同一条直线上,HGCG,求建筑物GH的高度(结果精确到1m)(参考数据:sin33,cos33,tan33,sin36,cos36,tan36)【答案】64米【解析】【分析】如图,因为BEF=45,所以BF=EF,在RtDBF中,tanBDF=,求出BF、DF,再证明BFDDPA,得出DP=BF=18米,PA=FD=30米,求出DM的长,因为HM=DMtan36,

51、所以GH=HM+MG【详解】解:如图,把线段ED向两边延长,分别交BC于点F,交HG于点M,过点D作DPAC,垂足为P那么BFD=90,DMH=90,DP=MG,新修建的斜坡BE的坡角为45,BEF=45,BF=EF,斜坡AB的坡角为33DAC=BDF=33,tanBDF=,DE=12米,BF18米,FD30米,在BFD和DPA中,BFDDPA,DP=BF18米,PA=FD30米,在矩形DPGM中,MG=DP18米,DM=PG=PA+AG30+36=66(米),在RtDMH中,HM=DMtan366646.2(米),则GH=HM+MG46.2+1864(米)答:建筑物GH高约为64米【点睛】此

52、题考查了解直角三角形的应用-仰角俯角问题、坡度坡角问题,解题的关键是数形结合,构造直角三角形求解20. 某商场计划在年前用40000元购进一批新款衬衫进行销售,由于进货厂商促销,实际以8折的价格购进这次衬衫,结果比原计划多购进80件(1)该商场实际购进每件衬衫多少元?(2)该商场打算在进阶的基础上,每件衬衫加价50%进行销售由于接近年底,可能会出现滞销,因此会有20%的衬衫需要打5折降价出售,该商场要想获得不低于20000元的利润,应至少再购进衬衫多少件?【答案】(1)该商场实际购进每件衬衫100元(2)应至少再购进衬衫172件,商场获得不低于20000元的利润【解析】【分析】(1)设该商场原

53、计划多购进每件衬衫x元, 根据等量关系实际以8折的价格购进这次衬衫,结果比原计划多购进80件,列方程,解方程即可;(2)解:设再购进y件衬衫,根据不等关系每件衬衫加价50%进行销售,会有20%的衬衫需要打5折降价出售,该商场要想获得不低于20000元的利润,列不等式10050%(400+ y)80%+100(1+50%)0.5-100(400+ y)20%20000,解不等式即可【小问1详解】解:设该商场原计划多购进每件衬衫x元,根据题意,解得x=125,经检验x=125是原方程的根,并符合实际,1250.8=100元,答该商场实际购进每件衬衫100元;【小问2详解】解:设再购进y件衬衫,根据

54、题意10050%(400+ y)80%+100(1+50%)0.5-100(400+ y)20%20000,整理得40(400+y)-5(400+y)20000,解得y,y为整数,应至少再购进衬衫172件,商场获得不低于20000元的利润【点睛】本题考查列分式方程解应用题,列不等式解应用题,掌握列分式方程和列不等式解应用题方法与步骤,抓住等量关系与不等关系列方程与不等式是解题关键21. 如图,矩形ABCD的对角线AC与BD相较于点O,EAC=BAC,CEAE,交AD于点F,连接DE、OF(1)求证:OFAC;(2)当BAC与ACB满足什么数量关系时,四边形AODE是菱形?请说明理由【答案】(1

55、)见详解;(2)当BAC=2ACB时,四边形AODE是菱形,理由见详解【解析】【分析】(1)根据CEAE,得出AEC=90,根据四边形ABCD为矩形,得出ABC=90,ADBC,可证AECABC(AAS),再证AF=CF即可;(2)先证ABO为等边三角形,DAO=ADO=ACB=30,得出AB=AO,由(1)知AECABC,得出AE=AB=AO=DO,EAC=BAC=60,再证AEOD,得出四边形AODE为平行四边形即可【小问1详解】证明:CEAE,AEC=90,四边形ABCD为矩形,ABC=90,ADBC,在AEC和ABC中,AECABC(AAS),ECA=BCA,ADBC,DAC=BCA=

56、ECA,AF=CF,点O为矩形对角线的交点,AO=CO,OFAC;【小问2详解】解:BAC=2ACB,ABC=90,BAC+ACB=90,BAC=2ACB,2ACB+ACB=90,ACB=30,BAC=2ACB=60,四边形ABCD为矩形,AO=CO=BO=DO,ABO为等边三角形,DAO=ADO=ACB=30,AB=AO,由(1)知AECABC,AE=AB=AO=DO,EAC=BAC=60,EAD=EAC-DAO=60-30=30,EAD=ADO=30,AEOD,AE=OD,四边形AODE为平行四边形,AE=AO,四边形AODE为菱形,当BAC=2ACB时,四边形AODE是菱形【点睛】本题考

57、查矩形的性质,三角形全等判定与性质,等腰三角形的判定与性质,等边三角形判定与性质,菱形的判定,掌握以上知识点是解题关键22. 某电子公司前期投入240万元作为某种电子产品的研发费用,成功研制出这种市场热销的电子产品,已于当年投入生产并进行销售已知生产这种电子产品的成本为8元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图所示设该电子公司销售这种电子产品的年利润为S(万元)(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损计作下一年的成本)(1)请求y(万件)与销售价格x(元/件)之间的出函数关系式;(2)求出第一年这种电子产品的年利润S(万元)

58、与销售价格x(元/件)之间的出函数关系式,并求出第一年年利润的最大值(第一年年利润=总售价-总成本-研发费用);(3)假设公司的这种电子产品第一年恰好按年利润S(万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格x定在12元以上(x12),若年销售量与每件销售价格仍满足(1)的关系,当第二年的年利润不低于44万元时,求出第二年销售量的最大值【答案】(1)每年的年销售量y(万件)与销售价格x(元/件)的关系(2)当x=20时,S最大=-96(万元)(3)当18x22时,第二年的年利润S不等于44万元,最大值为48万元【解析】【分析】(1)设每年的年销售量y

59、(万件)与销售价格x(元/件)的关系,过点(12,20)(32,0),代入坐标得:解方程即可;(2)根据题意用每件利润(售价-成本)件数-科研投入列函数关系式整理配方S=即可;(3)利用每件利润(售价-成本)件数-上一年亏损额=预定利润列方程,求出两个根,画函数图像示意图,利用图像法求解即可【小问1详解】解:设每年的年销售量y(万件)与销售价格x(元/件)的关系,过点(12,20)(32,0),代入坐标得:,解得:,每年的年销售量y(万件)与销售价格x(元/件)的关系;【小问2详解】解:S=,a=-10,函数开口向上,函数有最大值,当x=20时,S最大=-96(万元);【小问3详解】解:第二年利润S=,令S=44,得S=,整理得,解得,在平面直角坐标系中画出S与x的函数图像可得,观察示意图可知,当S44时,18x22,S=,当x=20时,S最大=48,44S48,答当18x22时,第二年年利润S不等于44万元,最大值为48万元【点睛】本题考查待定系数法求一次函数解析式,列二次函数关系式,一元二次方程,图像法解不等式,掌握待定系数法求一次函数解析式,列二次函数关系式,一元二次方程,图像法解不等式是解题关键23. 定义:有一组邻边相等且对角互补的四边形叫做等补四边形(1)【问题理解】如图1,在O上有三个点A、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论