版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1如图,函数的图象与轴的一个交点坐标为(3,0),则另一交点的横坐标为( )A4B3C2D12如图,在O中,点A、B、C在O上,且ACB110,则( )A70B110C120D1403已知二次函数和一次函数的图象如图所示,下面四个推断:二次函数
2、有最大值二次函数的图象关于直线对称当时,二次函数的值大于0过动点且垂直于x轴的直线与的图象的交点分别为C,D,当点C位于点D上方时,m的取值范围是或,其中正确的有( )A1个B2个C3个D4个4方程x2+4x+40的根的情况是()A有两个不相等的实数根B有两个相等的实数根C有一个实数根D没有实数根5有一副三角板,含45的三角板的斜边与含30的三角板的长直角边相等,如图,将这副三角板直角顶点重合拼放在一起,点B,C,E在同一直线上,若BC2,则AF的长为()A2B22C42D26如图,四边形ABCD内接于O,连接AC,BD,点E在AD的延长线上,( )A若DC平分BDE,则AB=BCB若AC平分
3、BCD,则C若ACBD,BD为直径,则D若ACBD,AC为直径,则7如图,ABOB,AB=2,OB=4,把ABO绕点O顺时针旋转60得CDO,则AB扫过的面积(图中阴影部分)为()A2B2CD8在平面直角坐标系xOy中,以点(3,4)为圆心,4为半径的圆( )A与x轴相交,与y轴相切B与x轴相离,与y轴相交C与x轴相切,与y轴相交D与x轴相切,与y轴相离9将抛物线y=x2+4x+3向左平移1个单位,再向下平移3个单位的所得抛物线的表达式是( )Ay=(x+1)2-4By=-(x+1)2-4Cy=(x+3)2-4Dy=-(x+3)2-410已知点P(a,b)是平面直角坐标系中第四象限的点,则化简
4、+|b-a|的结果是()ABaCD二、填空题(每小题3分,共24分)11如图,中,是线段上的一个动点,以为直径画分别交于连接,则线段长度的最小值为_12计算:|3|+(2019)0+()-2=_13如图,已知点D,E是半圆O上的三等分点,C是弧DE上的一个动点,连结AC和BC,点I是ABC的内心,若O的半径为3,当点C从点D运动到点E时,点I随之运动形成的路径长是_14如图14,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,S10,则S1+S2+S3+S10= 15二次函数ya
5、(x+m)2+n的图象如图,则一次函数ymx+n的图象不经过第_象限16如图,在平面直角坐标系中,抛物线与轴的正半轴相交于点,其顶点为,将这条抛物线绕点旋转后得到的抛物线与轴的负半轴相交于点,其顶点为,连接,则四边形的面积为_;17已知二次函数yax2+bx+c(a0)的图象与x轴交于(x1,0),且1x10,对称轴x1如图所示,有下列5个结论:abc0;ba+c;4a+2b+c0;2c3b;a+bm(am+b)(m1的实数)其中所有结论正确的是_(填写番号)18如图,点在双曲线()上,过点作轴,垂足为点,分别以点和点为圆心,大于的长为半径作弧,两弧相交于,两点,作直线交轴于点,交轴于点,连接
6、.若,则的值为_.三、解答题(共66分)19(10分)如图,等腰中, ,点是边上一点,在上取点,使 (1)求证: ; (2)若,求的长20(6分)如图,在中,点从点出发,沿以每秒的速度向点运动,同时点从点出发,沿以每秒的速度向点运动,设运动的时间为秒.(1)当为何值时,与相似?(2)当时,请直接写出的值.21(6分)如图,点E在的中线BD上,(1)求证:;(2)求证:22(8分)某童装店购进一批20元/件的童装,由销售经验知,每天的销售量y(件)与销售单价x(元)之间存在如图的一次函数关系(1)求y与x之间的函数关系;(2)当销售单价定为多少时,每天可获得最大利润,最大利润是多少?23(8分)
7、(1)解方程:(配方法)(2)已知二次函数:与轴只有一个交点,求此交点坐标24(8分)二次函数yx22x3图象与x轴交于A、B两点,点A在点B左侧,求AB的长25(10分)已知:如图,在平面直角坐标系中,ABC是直角三角形,ACB90,点A,C的坐标分别为A(3,0),C(1,0),tanBAC(1)写出点B的坐标;(2)在x轴上找一点D,连接BD,使得ADB与ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如果点P从点A出发,以2cm/秒的速度沿AB向点B运动,同时点Q从点D出发,以1cm/秒的速度沿DA向点A运动当一个点停止运动时,另一个点也随之停止运动设运动时间为t问是
8、否存在这样的t使得APQ与ADB相似?如存在,请求出t的值;如不存在,请说明理由26(10分)如图,O是所在圆的圆心,C是上一动点,连接OC交弦AB于点D已知AB=9.35cm,设A,D两点间的距离为cm,O,D两点间的距离为cm,C,D两点间的距离为cm.小腾根据学习函数的经验,分别对函数,随自变量的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量的值进行取点、画图、测量,分别得到了,与的几组对应值:/cm0.001.002.003.004.005.006.007.108.009.35/cm4.933.992.281.701.592.042.883.674
9、.93/cm0.000.941.832.653.233.342.892.051.260.00(2)在同一平面直角坐标系中,描出表中各组数值所对应的点(,), (,),并画出(1)中所确定的函数,的图象;观察函数的图象,可得 cm(结果保留一位小数);(3)结合函数图象,解决问题:当OD=CD时,AD的长度约为 cm(结果保留一位小数)参考答案一、选择题(每小题3分,共30分)1、D【分析】根据到函数对称轴距离相等的两个点所表示的函数值相等可求解【详解】根据题意可得:函数的对称轴直线x=1,则函数图像与x轴的另一个交点坐标为(1,0)故横坐标为-1,故选D考点:二次函数的性质2、D【分析】作所对
10、的圆周角ADB,如图,利用圆内接四边形的性质得ADB70,然后根据圆周角定理求解【详解】解:作所对的圆周角ADB,如图,ACB+ADB180,ADB18011070,AOB2ADB140故选D【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半3、B【分析】根据函数的图象即可得到结论【详解】解:二次函数y1=ax2+bx+c(a0)的图象的开口向上,二次函数y1有最小值,故错误;观察函数图象可知二次函数y1的图象关于直线x=-1对称,故正确;当x=-2时,二次函数y1的值小于0,故错误;当x-3或x-1时,抛物线在直线的上方,m的取值范围为:
11、m-3或m-1,故正确故选B【点睛】本题考查了二次函数图象上点的坐标特征以及函数图象,熟练运用二次函数图象上点的坐标特征求出二次函数解析式是解题的关键4、B【分析】判断上述方程的根的情况,只要看根的判别式b24ac的值的符号就可以了【详解】解:b24ac16160方程有两个相等的实数根故选:B【点睛】本题考查了一元二次方程根的判别式的应用总结:一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根5、D【分析】根据正切的定义求出AC,根据正弦的定义求出CF,计算即可【详解】解:在RtABC中,BC2,A30,AC2,则EF
12、AC2,E45,FCEFsinE,AFACFC2,故选:D【点睛】本题考查的是特殊角的三角函数值的应用,掌握锐角三角函数的概念、熟记特殊角的三角函数值是解题的关键6、D【分析】利用圆的相关性质,依次分析各选项作答.【详解】解:A. 若平分,则,A错 B. 若平分,则,则,B错C. 若,为直径,则C错D. 若,AC为直径,如图:连接BO并延长交于点E,连接DE,.BE为直径,, .选D.【点睛】本题考查圆的相关性质,另外需结合勾股定理,三角函数相关知识解题属于综合题.7、C【解析】根据勾股定理得到OA,然后根据边AB扫过的面积=解答即可得到结论【详解】如图,连接OA、OCABOB,AB=2,OB
13、=4,OA=,边AB扫过的面积= =故选C【点睛】本题考查了扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解题的关键8、C【解析】分析:首先画出图形,根据点的坐标得到圆心到X轴的距离是4,到Y轴的距离是3,根据直线与圆的位置关系即可求出答案解答:解:圆心到X轴的距离是4,到y轴的距离是3,4=4,34,圆与x轴相切,与y轴相交,故选C9、C【分析】先确定抛物线=2+4+3的顶点坐标为(-2,-1),再根据点平移的规律得到点(-2,-1)平移后所得对应点的坐标为(-3,-4),然后根据顶点式写出平移后的抛物线解析式【详解】解:y=x2+4x+3=x2+4x+4-4+3 =(x+2)2-1
14、将抛物线y=x2+4x+3向左平移1个单位,再向下平移3个单位 平移后的函数解析式为:y=(x+2+1)2-1-3,即y=(x+3)2-4. 故选:C【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式10、A【解析】根据第四象限的点的横坐标是正数,纵坐标是负数,求解即可【详解】点P(a,b)是平面直角坐标系中第四象限的点,a0,b0,ba0,+|b-a|=b(ba)=bb+a=2b+a=a2b,故选A.【点睛】本题考
15、查点的坐标, 二次根式的性质与化简,解题的关键是根据象限特征判断正负.二、填空题(每小题3分,共24分)11、【详解】解:如图,连接,过点作,垂足为,由,而,则在中,所以当最小即半径最小时,线段长度取到最小值,故当时,线段长度最小在中,则此时的半径为1,故答案为:12、【分析】直接利用负指数幂法则以及绝对值的代数意义和零指数幂的法则、算术平方根的性质分别化简得出答案【详解】解:原式,故答案为:【点睛】此题主要考查了负指数幂法则以及绝对值的代数意义和零指数幂的法则、算术平方根的性质,正确利用法则化简各数是解题关键13、【分析】连接AI,BI,作OTAB交O 于T,连接AT,TB,以T为圆心,TA
16、为半径作T, 在优弧AB上取一点G,连接AG,BG证明AIB+G=180,推出A,I,B,G四点共圆,【详解】如图,连接AI,BI,作OTAB交O 于T,连接AT,TB,以T为圆心,TA为半径作T,在优弧AB上取一点G,连接AG,BG推出点I的运动轨迹是即可解决问题AB是直径,ACB90,I是ABC的内心,AIB135,OTAB,OAOB,TATB,ATB90,AGBATB45,AIB+G180,A,I,B,G四点共圆,点I的运动轨迹是,由题意 ,MTM30,易知TATM3,点I随之运动形成的路径长是,故答案为【点睛】本题考查了轨迹,垂径定理、圆周角定理、三角形的内心和等边三角形的性质等知识,
17、 解题的关键是正确寻找点的运动轨迹14、.【解析】图1,过点O做OEAC,OFBC,垂足为E.F,则OEC=OFC=90C=90四边形OECF为矩形OE=OF矩形OECF为正方形设圆O的半径为r,则OE=OF=r,AD=AE=3r,BD=4r3r+4r=5,r=1S1=12=图2,由SABC=34=5CDCD= 由勾股定理得:AD= ,BD=5=,由(1)得:O的半径=,E的半径=,S1+S2=()2+()2=.图3,由SCDB=4MDMD=,由勾股定理得:CM=,MB=4=,由(1)得:O的半径=,E的半径=,F的半径=,S1+S2+S3=()2+()2+()2=15、一【分析】由二次函数解
18、析式表示出顶点坐标,根据图形得到顶点在第四象限,求出m与n的正负,即可作出判断【详解】根据题意得:抛物线的顶点坐标为(m,n),且在第四象限,m0,n0,即m0,n0,则一次函数ymx+n不经过第一象限故答案为:一【点睛】此题考查了二次函数与一次函数图象与系数的关系,熟练掌握二次函数及一次函数的图象与性质是解本题的关键16、32【分析】利用抛物线的解析式算出M的坐标和A的坐标,根据对称算出B和N的坐标,再利用两个三角形的面积公式计算和即可.【详解】,M(2,-4),令,解得x1=0,x2=4,A(0,4),B,N分别关于原点O的对称点是A,M,B(-4,-0),N(-2,4),AB=8,四边形
19、AMBN的面积为:2SABM=,故答案为:32.【点睛】本题考查二次函数的性质,关键在于利用对称性得出坐标点.17、【解析】根据函数图象和二次函数的性质可以判断题目中各个小题的结论是否成立,从而可以解答本题【详解】解:由图象可得,抛物线开口向下,则a0,对称轴在y轴右侧,则与a的符号相反,故b0.a0,b0,c0,abc0,故错误,当x=-1时,y=a-b+c0,得ba+c,故错误,二次函数y=ax2+bx+c(a0)的图象与x轴交于(x1,0),且-1x10,对称轴x=1,x=2时的函数值与x=0的函数值相等,x=2时,y=4a+2b+c0,故正确,x=-1时,y=a-b+c0,-=1,2a
20、-2b+2c0,b=-2a,-b-2b+2c0,2c3b,故正确,由图象可知,x=1时,y取得最大值,此时y=a+b+c,a+b+cam2+bm+c(m1),a+bam2+bma+bm(am+b),故正确,故答案为:【点睛】本题考查二次函数图象与系数的关系、抛物线与x轴的交点坐标,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答18、【分析】设OA交CF于K利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【详解】解:如图,设OA交CF于K由作图可知,CF垂直平分线段OA,OC=CA=1,OK=AK,在RtOFC中,CF=,AK=OK=,OA=,AOB+
21、AOF=90,CFO+AOF=90,AOB=CFO,又ABO=COF,FOCOBA,OB=,AB=,A(,),k=故答案为:【点睛】本题考查了尺规作图-作线段的垂直平分线,线段垂直平分线的性质,反比例函数图象上的点的坐标特征,勾股定理,相似三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型三、解答题(共66分)19、(1)见解析;(2)【分析】(1)利用三角形外角定理证得EDC=DAB,再根据两角相等即可证明ABDDCE;(2)作高AF,利用三角函数求得,继而求得,再根据ABDDCE,利用对应边成比例即可求得答案【详解】(1)ABC是等腰三角形,且BAC=120,
22、ABD=ACB=30,ABD=ADE=30,ADC=ADE+EDC=ABD+DAB,EDC=DAB,ABDDCE;(2)过作于,ABC是等腰三角形,且BAC=120,ABD=ACB=30,则,所以【点睛】本题是相似形的综合题,考查了三角形相似的性质和判定、等腰三角形的性质、解直角三角形,证得ABDDCE是解题的关键20、(1)当或时,与相似;(2)【分析】(1)与相似,分两种情况:当 时,;当时,.分情况进行讨论即可;(2)通过求出P,Q运动的时间,然后通过作为中间量建立所求的两个三角形之间的关系,从而比值可求.【详解】(1)由题意得,当时 即 解得:.当时 即 解得:,(舍去)综上所述,当或
23、时,与相似(2)当时, 和等高, 此时运动的时间为1秒则 和等高.【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定和性质是解题的关键.21、(1)见解析;(2)见解析【分析】(1)由DAE=ABD,ADE=BDA,根据有两角对应相等的三角形相似,可得ADEBDA;(2)由点E在中线BD上,可得,又由CDE=BDC,根据两组对应边的比相等且夹角对应相等的两个三角形相似,即可得CDEBDC,继而证得DEC=ACB【详解】解:证明:(1)DAE=ABD,ADE=BDA,ADEBDA;(2)D是AC边上的中点,AD=DC,ADEBDA,又CDE=BDC,CDEBDC,DEC=ACB【点
24、睛】此题考查了相似三角形的判定与性质此题难度不大,注意掌握数形结合思想的应用22、(1)y10 x+700;(2)销售单价为45元时,每天可获得最大利润,最大利润为1元【分析】(1)由一次函数的图象可知过(30,400)和(40,300),利用待定系数法可求得y与x的关系式;(2)利用x可表示出p,再利用二次函数的性质可求得p的最大值【详解】(1)设一次函数解析式为y=kx+b(k0),由图象可知一次函数的过(30,400)和(40,300),代入解析式可得,解得:,y与x的函数关系式为y=10 x+700;(2)设利润为p元,由(1)可知每天的销售量为y千克,p=y(x20)=(10 x+7
25、00)(x20)=10 x2+900 x14000=10(x45)2+1100,p=10(x45)2+1是开口向下的抛物线,当x=45时,p有最大值,最大值为1元,即销售单价为45元时,每天可获得最大利润,最大利润为1元【点睛】本题考查了二次函数的应用,求得每天的销售量y与x的函数关系式是解答本题的关键,注意二次函数最值的求法23、(1)(2),交点坐标为【分析】(1)把常数项移到方程的右边,两边加上一次项系数的一半的平方,进行配方,再用直接开平方的方法解方程即可,(2)由二次函数的定义得到:再利用求解的值,最后求解交点的坐标即可【详解】解:(1) , (2) 二次函数:与轴只有一个交点, 这个交点为抛物线的顶点,顶点坐标为: 即此交点的坐标为:【点睛】本题考查了解一元二次方程的配方法,二次函数与轴的交点坐标问题,掌握相关知识是解题的关键24、1【分析】通过解方程x22x30得A点坐标为(1,0),B点坐标为(3,0),然后根据两点间的距离公式得到AB的长所以AB的长为3(1)1【详解】当y0时,x22x3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 核医学基础知识课件
- 励志表演演讲300字10篇
- 酒店暑假实习报告合集七篇
- 买卖合同模板集锦9篇
- 信息技术的工作总结
- 初中数学教师教学反思范文5篇
- 同上一堂国家安全教育课线上直播心得10篇
- 大学生迎新策划书15篇
- 七年级下学期数学教学计划3篇
- 随机变量课件
- 岩体力学与工程智慧树知到答案2024年合肥工业大学
- 2025届高考数学复习 函数导数 备考策略分析课件
- 科室VTE工作总结课件
- 二年级上册数学教案-小小测量员 (2)-西师大版
- APQC跨行业流程分类框架(PCF)V7.4版-2024年8月21日版-雷泽佳编译
- 《2023-2024中国区块链发展年度报告》
- 国家开放大学本科《理工英语3》一平台机考总题库2025珍藏版
- 六年级上册美术说课稿 -第7课《 变化多样的脸谱》桂美版(广西版)
- 人教版七年级数学上册3.4 第3课时《 球赛积分表问题》说课稿1
- 2022-2023学年广东省深圳市高一(上)期末数学试卷-解析版
- 2024年物业经理(中级)职业鉴定考试题库(含答案)
评论
0/150
提交评论