2023学年黑龙江省大庆市第五十七中学数学九上期末综合测试模拟试题含解析_第1页
2023学年黑龙江省大庆市第五十七中学数学九上期末综合测试模拟试题含解析_第2页
2023学年黑龙江省大庆市第五十七中学数学九上期末综合测试模拟试题含解析_第3页
2023学年黑龙江省大庆市第五十七中学数学九上期末综合测试模拟试题含解析_第4页
2023学年黑龙江省大庆市第五十七中学数学九上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1已知点在同一个函数的图象上,这个函数可能是( )ABCD2如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:AME=90;BAF=EDB;BMO=90;MD=2AM=4EM;其中正确结论的是( )A

2、BCD3如图,在中,将绕点按顺时针旋转后得到此时点在边上,则旋转角的大小为( )ABCD4已知正比例函数的函数值随自变量的增大而增大,则二次函数的图象与轴的交点个数为( )A2B1C0D无法确定5若两个相似三角形的周长之比是1:4,那么这两个三角形的面积之比是()A1:4B1:2C1:16D1:86四边形内接于,点是的内心,点在的延长线上,则的度数为()A56B62C68D487如图,O的弦AB=16,OMAB于M,且OM=6,则O的半径等于A8B6C10D208方程的两根分别是,则等于 ( )A1B-1C3D-39下列事件中,是必然事件的是()A任意买一张电影票,座位号是2的倍数B13个人中

3、至少有两个人生肖相同C车辆随机到达一个路口,遇到红灯D明天一定会下雨10阅读理解:已知两点,则线段的中点的坐标公式为:,如图,已知点为坐标原点,点,经过点,点为弦的中点若点,则有满足等式:设,则满足的等式是()ABCD11某公司一月份缴税40万元,由于公司的业绩逐月稳步上升,假设每月的缴税增长率相同,第一季度共缴税145.6万元,该公司这季度缴税的月平均增长率为多少?设公司这季度缴税的月平均增长率为x,则下列所列方程正确的是( )ABCD12已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x2时,y随x的增大而增大,且-2x1时,y的最大值为9,则a的值为A1或B-或CD1二、

4、填空题(每题4分,共24分)13如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7叫做“正六边形的渐开线”,其中弧FK1、弧K1K2、弧K2K3、弧K3K4、弧K4K5、弧K5K6、的圆心依次按点A、B、C、D、E、F循环,其弧长分别为l1、l2、l3、l4、l5、l6、当AB1时,l3=_,l2019_14若x=是一元二次方程的一个根,则n的值为 _15已知二次函数的自变量与函数的部分对应值列表如下:32100343则关于的方程的解是_.16在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形

5、,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为1问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是_(不包括1)17小明制作了一张如图所示的贺卡. 贺卡的宽为,长为,左侧图片的长比宽多. 若,则右侧留言部分的最大面积为_. 18如图,在菱形ABCD中,边长为1,A60,顺次连接菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四

6、边形A3B3C3D3;按此规律继续下去,则四边形A2019B2019C2019D2019的面积是_三、解答题(共78分)19(8分)在四边形ABCD中,对角线AC、BD相交于点O,设锐角DOC,将DOC按逆时针方向旋转得到DOC(0旋转角90)连接AC、BD,AC与BD相交于点M(1)当四边形ABCD是矩形时,如图1,请猜想AC与BD的数量关系以及AMB与的大小关系,并证明你的猜想;(2)当四边形ABCD是平行四边形时,如图2,已知ACkBD,请猜想此时AC与BD的数量关系以及AMB与的大小关系,并证明你的猜想;(3)当四边形ABCD是等腰梯形时,如图3,ADBC,此时(1)AC与BD的数量关

7、系是否成立?AMB与的大小关系是否成立?不必证明,直接写出结论20(8分)已知:在平面直角坐标系中,抛物线()交x轴于A、B两点,交y轴于点C,且对称轴为直线x=-2 .(1)求该抛物线的解析式及顶点D的坐标;(2)若点P(0,t)是y轴上的一个动点,请进行如下探究:探究一:如图1,设PAD的面积为S,令WtS,当0t4时,W是否有最大值?如果有,求出W的最大值和此时t的值;如果没有,说明理由;探究二:如图2,是否存在以P、A、D为顶点的三角形与RtAOC相似?如果存在,求点P的坐标;如果不存在,请说明理由21(8分)如图所示,是的直径,其半径为 ,扇形的面积为 . (1)求的度数; (2)求

8、的长度.22(10分)综合与实践探究正方形旋转中的数学问题问题情境:已知正方形中,点在边上,且.将正方形绕点顺时针旋转得到正方形(点,分别是点,的对应点).同学们通过小组合作,提出下列数学问题,请你解答.特例分析:(1)“乐思”小组提出问题:如图1,当点落在正方形的对角线上时,设线段与交于点.求证:四边形是矩形;(2)“善学”小组提出问题:如图2,当线段经过点时,猜想线段与满足的数量关系,并说明理由;深入探究:(3)请从下面,两题中任选一题作答.我选择题.A在图2中连接和,请直接写出的值.B“好问”小组提出问题:如图3,在正方形绕点顺时针旋转的过程中,设直线交线段于点.连接,并过点作于点.请在

9、图3中补全图形,并直接写出的值.23(10分)已知:在同一平面直角坐标系中,一次函数与二次函数的图象交于点.(1)求,的值;(2)求二次函数图象的对称轴和顶点坐标.24(10分)如图,AB是O的直径,直线MC与O相切于点C过点A作MC的垂线,垂足为D,线段AD与O相交于点E(1)求证:AC是DAB的平分线;(2)若AB10,AC4,求AE的长25(12分)如图,抛物线过点,直线交抛物线于点,点的横坐标为,点是线段上的动点(1)求直线及抛物线的解析式;(2)过点的直线垂直于轴,交抛物线于点,求线段的长度与的关系式,为何值时,最长?(3)是否存在点使为等腰三角形,若存在请直接写出点的坐标,若不存在

10、,请说明理由26如图,已知正方形ABCD,点E为AB上的一点,EFAB,交BD于点F(1)如图1,直按写出的值 ;(2)将EBF绕点B顺时针旋转到如图2所示的位置,连接AE、DF,猜想DF与AE的数量关系,并证明你的结论;(3)如图3,当BEBA时,其他条件不变,EBF绕点B顺时针旋转,设旋转角为(0360),当为何值时,EAED?在图3或备用图中画出图形,并直接写出此时 参考答案一、选择题(每题4分,共48分)1、D【解析】由点的坐标特点,可知函数图象关于轴对称,于是排除选项;再根据的特点和二次函数的性质,可知抛物线的开口向下,即,故选项正确【详解】点与点关于轴对称;由于的图象关于原点对称,

11、因此选项错误;由可知,在对称轴的右侧,随的增大而减小,对于二次函数只有时,在对称轴的右侧,随的增大而减小,选项正确故选【点睛】考查正比例函数、反比例函数、二次函数的图象和性质,可以采用排除法,直接法得出答案2、D【解析】根据正方形的性质可得AB=BC=AD,ABC=BAD=90,再根据中点定义求出AE=BF,然后利用“边角边”证明ABF和DAE全等,根据全等三角形对应角相等可得BAF=ADE,然后求出ADE+DAF=BAD=90,从而求出AMD=90,再根据邻补角的定义可得AME=90,从而判断正确;根据中线的定义判断出ADEEDB,然后求出BAFEDB,判断出错误;根据直角三角形的性质判断出

12、AED、MAD、MEA三个三角形相似,利用相似三角形对应边成比例可得,然后求出MD=2AM=4EM,判断出正确,设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据相似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判断出正确;过点M作MNAB于N,求出MN、NB,然后利用勾股定理列式求出BM,过点M作GHAB,过点O作OKGH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根据正方形的性质求出BO,然后利用勾股定理逆定理判断出BMO=90,从而判断出正确【详解】在正方形ABCD中,AB=BC=AD,ABC=BAD=90,E、F分别为边AB,BC的中点,AE

13、=BF=BC,在ABF和DAE中, ,ABFDAE(SAS),BAF=ADE,BAF+DAF=BAD=90,ADE+DAF=BAD=90,AMD=180-(ADE+DAF)=180-90=90,AME=180-AMD=180-90=90,故正确;DE是ABD的中线,ADEEDB,BAFEDB,故错误;BAD=90,AMDE,AEDMADMEA,AM=2EM,MD=2AM,MD=2AM=4EM,故正确;设正方形ABCD的边长为2a,则BF=a,在RtABF中,AF= BAF=MAE,ABC=AME=90,AMEABF, ,即,解得AM= MF=AF-AM=,AM=MF,故正确;如图,过点M作MN

14、AB于N,则 即 解得MN=,AN=,NB=AB-AN=2a-=,根据勾股定理,BM=过点M作GHAB,过点O作OKGH于K,则OK=a-=,MK=-a=,在RtMKO中,MO=根据正方形的性质,BO=2a,BM2+MO2= BM2+MO2=BO2,BMO是直角三角形,BMO=90,故正确;综上所述,正确的结论有共4个故选:D【点睛】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键3、A【分析】根据旋转的性质和三角形的内角和进行角的运算即可得出结果

15、【详解】解:在中,B=59,将绕点按顺时针旋转后得到,BCD是旋转角,BC=DC,CDB=B=59,BCD=180CDBB=62,故选A【点睛】本题考查了旋转的性质和三角形的内角和,解题的关键是找到旋转角并熟练运用旋转的性质求解4、A【分析】根据正比例函数的性质可以判断k的正负情况,然后根据的正负,即可判断二次函数的图象与轴的交点个数,本题得以解决【详解】正比例函数的函数值随自变量的增大而增大,k0,二次函数为2(k1)241(k21)8k80,二次函数为与轴的交点个数为2,故选:A【点睛】本题考查二次函数与x轴的交点个数和正比例函数的性质,解答本题的关键是明确题意,利用根的判别式来解答5、C

16、【分析】根据相似三角形的面积的比等于相似比的平方可得答案【详解】解:相似三角形的周长之比是1:4,对应边之比为1:4,这两个三角形的面积之比是:1:16,故选C【点睛】此题主要考查了相似三角形的性质,关键是掌握相似三角形的周长的比等于相似比;相似三角形的面积的比等于相似比的平方6、C【分析】由点I是 的内心知 ,从而求得 ,再利用圆内接四边形的外角等于内对角可得答案【详解】点I是 的内心 , 四边形内接于 故答案为:C 【点睛】本题考查了三角形的内心,圆内接四边形的性质,掌握三角形内心的性质和圆内接四边形的外角等于内对角是解题的关键7、C【分析】连接OA,即可证得OMA是直角三角形,根据垂径定

17、理即可求得AM,根据勾股定理即可求得OA的长,即O的半径【详解】连接OA,M是AB的中点,OMAB,且AM=8,在RtOAM中,OA=1故选C【点睛】本题主要考查了垂径定理,以及勾股定理,根据垂径定理求得AM的长,证明OAM是直角三角形是解题的关键8、B【分析】根据一元二次方程根与系数的关系,即可得到答案.【详解】解:的两根分别是,故选:B.【点睛】本题考查了一元二次方程根与系数的关系,解题的关键是熟练掌握一元二次方程根与系数的关系进行解题.9、B【解析】必然事件就是一定发生的事件,结合不可能事件、随机事件的定义依据必然事件的定义逐项进行判断即可【详解】A、“任意买一张电影票,座位号是2的倍数

18、”是随机事件,故此选项错误;B、“13个人中至少有两个人生肖相同”是必然事件,故此选项正确;C、“车辆随机到达一个路口,遇到红灯”是随机事件,故此选项错误;D、“明天一定会下雨”是随机事件,故此选项错误,故选B【点睛】本题考查了随机事件解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件10、D【解析】根据中点坐标公式求得点的坐标,然后代入满足的等式进行求解即可.【详解】点,点,点为弦的中点,又满足等式:,故选D【点睛】本题考查了坐标与图形性质,解

19、题的关键是理解中点坐标公式11、D【分析】根据题意,第二月获得利润万元,第三月获得利润万元,根据第一季度共获利145.6万元,即可得出关于的一元二次方程,此题得解【详解】设二、三月份利润的月增长率为,则第二月获得利润万元,第三月获得利润万元,依题意,得:故选:D【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键求平均变化率的方法为:若变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为12、D【解析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a0,然后由-2x1时,y的最大值为9,可得x=1时,y=9,即可求出

20、a【详解】二次函数y=ax2+2ax+3a2+3(其中x是自变量),对称轴是直线x=-=-1,当x2时,y随x的增大而增大,a0,-2x1时,y的最大值为9,x=1时,y=a+2a+3a2+3=9,3a2+3a-6=0,a=1,或a=-2(不合题意舍去)故选D【点睛】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a0)的图象具有如下性质:当a0时,抛物线y=ax2+bx+c(a0)的开口向上,x-时,y随x的增大而减小;x-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点当a0时,抛物线

21、y=ax2+bx+c(a0)的开口向下,x-时,y随x的增大而增大;x-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点二、填空题(每题4分,共24分)13、 673 【分析】用弧长公式,分别计算出l1,l2,l3,的长,寻找其中的规律,确定l2019的长【详解】解:根据题意得:l1=,l2=,l3=,则l2019=.故答案为:;673.【点睛】本题考查的是弧长的计算,先用公式计算,找出规律,则可求出ln的长14、【分析】把代入到一元二次方程中求出的值即可【详解】解:是一元二次方程的一个根,解得:,故答案为:【点睛】本题考查了一元二次方程的解,方程的解即为能使方程左右两边

22、相等的未知数的值,牢记方程的解满足方程,代入即可是解决此类问题的关键15、,【分析】首先根据与函数的部分对应值求出二次函数解析式,然后即可得出一元二次方程的解.【详解】将(0,-3)(-1,-4)(-3,0)代入二次函数,得解得二次函数解析式为方程为方程的解为,故答案为,.【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.16、9或2或3.【解析】分析:共有三种情况:当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为2;当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为3;当DG=7,CG=

23、4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.详解:当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为2当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为3;当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.故答案为9或2或3点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题17、320【分析】先求出右侧留言部分的长,再根据矩形的面积公式得出面积与x的函数解析式,利用二次函

24、数的图像与性质判断即可得出答案.【详解】根据题意可得,右侧留言部分的长为(36-x)cm右侧留言部分的面积又14x16当x=16时,面积最大(故答案为320.【点睛】本题考查的是二次函数的实际应用,比较简单,解题关键是根据题意写出面积的函数表达式.18、【分析】连接AC、BD,根据菱形的面积公式,得S菱形ABCD=,进而得矩形A1B1C1D1的面积,菱形A2B2C2D2的面积,以此类推,即可得到答案【详解】连接AC、BD,则ACBD,菱形ABCD中,边长为1,A60,S菱形ABCDACBD11sin60,顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1,四边形A1B1C1D1是矩形,矩

25、形A1B1C1D1的面积ACBDACBDS菱形ABCD,菱形A2B2C2D2的面积矩形A1B1C1D1的面积S菱形ABCD,四边形A2019B2019C2019D2019的面积,故答案为:【点睛】本题主要考查菱形得性质和矩形的性质,掌握菱形的面积公式,是解题的关键三、解答题(共78分)19、(1)BDAC,AMB,见解析;(2)ACkBD,AMB,见解析;(3)ACBD成立,AMB不成立【分析】(1)通过证明BODAOC得到BDAC,OBDOAC,根据三角形内角和定理求出AMBAOBCOD;(2)依据(1)的思路证明BODAOC,得到ACkBD,设BD与OA相交于点N,由相似证得BNOANM,

26、再根据三角形内角和求出AMB;(3)先利用等腰梯形的性质OA=OD,OB=OC,再利用旋转证得,由此证明,得到BDAC及对应角的等量关系,由此证得AMB不成立【详解】解:(1)ACBD,AMB,证明:在矩形ABCD中,ACBD,OAOCAC,OBODBD,OAOCOBOD,又ODOD,OCOC,OBODOAOC,DODCOC,180DOD180COC,BODAOC,BODAOC,BDAC,OBDOAC,设BD与OA相交于点N,BNOANM,180OACANM180OBDBNO,即AMBAOBCOD,综上所述,BDAC,AMB,(2)ACkBD,AMB,证明:在平行四边形ABCD中,OBOD,O

27、AOC,又ODOD,OCOC,OCOA,ODOB,DODCOC,180DOD180COC,BODAOC,BODAOC,BD:ACOB:OABD:AC,ACkBD,ACkBD,BODAOC,设BD与OA相交于点N,BNOANM,180OACANM180OBDBNO,即AMBAOB,综上所述,ACkBD,AMB,(3)在等腰梯形ABCD中,OA=OD,OB=OC,由旋转得: ,即,ACBD, ,设BD与OA相交于点N,ANB=+AMB=,ACBD成立,AMB不成立【点睛】此题是变化类图形问题,根据变化的图形找到共性证明三角形全等,由此得到对应边相等,对应角相等,在(3)中,对应角的位置发生变化,故

28、而角度值发生了变化.20、(1), D(-2,4)(2)当t=3时,W有最大值,W最大值=1存在只存在一点P(0,2)使RtADP与RtAOC相似【解析】(1)由抛物线的对称轴求出a,就得到抛物线的表达式了;(2)下面探究问题一,由抛物线表达式找出A,B,C三点的坐标,作DMy轴于M,再由面积关系:SPAD=S梯形OADM-SAOP-SDMP得到t的表达式,从而W用t表示出来,转化为求最值问题难度较大,运用分类讨论思想,可以分三种情况:(1)当P1DA=90时;(2)当P2AD=90时;(3)当AP3D=90时。【详解】解:(1)抛物线y=ax2-x+3(a0)的对称轴为直线x=-2D(-2,

29、4)(2)探究一:当0t4时,W有最大值抛物线交x轴于A、B两点,交y轴于点C,A(-6,0),B(2,0),C(0,3),OA=6,OC=3当0t4时,作DMy轴于M,则DM=2,OM=4P(0,t),OP=t,MP=OM-OP=4-tS三角形PAD=S梯形OADM-S三角形AOP-S三角形DMP=12-2tW=t(12-2t)=-2(t-3)2+1当t=3时,W有最大值,W最大值=1探究二:存在分三种情况:当P1DA=90时,作DEx轴于E,则OE=2,DE=4,DEA=90,AE=OA-OE=6-2=4=DEDAE=ADE=45,P1DE=P1DA-ADE=90-45=45度DMy轴,O

30、Ay轴,DMOA,MDE=DEA=90,MDP1=MDE-P1DE=90-45=45度P1M=DM=2,此时又因为AOC=P1DA=90,RtADP1RtAOC,OP1=OM-P1M=4-2=2,P1(0,2)当P1DA=90时,存在点P1,使RtADP1RtAOC,此时P1点的坐标为(0,2)当P2AD=90时,则P2AO=45,P2AD与AOC不相似,此时点P2不存在当AP3D=90时,以AD为直径作O1,则O1的半径圆心O1到y轴的距离d=4dr,O1与y轴相离不存在点P3,使AP3D=90度综上所述,只存在一点P(0,2)使RtADP与RtAOC相似21、(1)60;(2)【分析】(1

31、)根据扇形面积公式求圆心角的度数即可;(2)由第一问,求得BOC的度数,然后利用弧长公式求解.【详解】由扇形面积公式得:的长度为:【点睛】本题考查扇形面积和弧长的求法,熟练掌握公式正确进行计算是本题的解题关键.22、(1)见解析;(2);(3)A.,B.【分析】(1)根据旋转性质证得,从而证得绪论;(2)连接、,过点作,根据旋转性质结合三角形三线合一的性质证得,再证得四边形是矩形,从而求得结论;(3)A. 设,根据旋转性质结合两边对应成比例且夹角相等证得,利用相似三角形对应边成比例再结合勾股定理即可求得答案;B. 作交直线于点,根据旋转性质利用AAS证得,证得OP是线段的中垂线,根据旋转性质结

32、合两边对应成比例且夹角相等证得,利用相似三角形对应高的比等于相似比再结合勾股定理即可求得答案;【详解】(1)由题意得:,由旋转性质得:, 四边形是矩形(2)连接、,过点作于N,由旋转得:,OND,=,四边形是矩形,;(3)A.如图,连接,由旋转的性质得:BO=,BO= O,设,则,B.如图,过点作AG交直线于点G,过点O作交直线于点,连接OP,AG,四边形是正方形 ,由旋转可知: ,在和中,又,又, ,设,则,在中,由勾股定理可得:,【点睛】本题考查四边形综合题、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、勾股定理、矩形的性质、线段的垂直平分线的性质和判定等知识,解题的关键是准确

33、寻找全等三角形解决问题23、(1),;(2)对称轴为直线,顶点坐标.【分析】(1)把A点坐标代入一次函数解析式可求得m的值,得出A点坐标,再代入二次函数解析式可得c;(2)将(1)中得出的二次函数的解析式化为顶点式可求得其顶点坐标和对称轴【详解】解:(1)点A在一次函数图象上,m=-1-4=-5,点A在二次函数图象上,-5=-1-2+c,解得c=-2;(2)由(1)可知二次函数的解析式为:,二次函数图象的对称轴为直线x=1,顶点坐标为(1,-1)【点睛】本题考查的知识点是一次函数的性质以及二次函数的性质,熟记各知识点是解此题的关键24、(1)详见解析;(2)1【分析】(1)连接OC,根据切线的

34、性质得到OCM90,得到OCAD,根据平行线的性质、等腰三角形的性质证明结论;(2)连接BC,连接BE交OC于点F,根据勾股定理求出BC,证明CFBBCA,根据相似三角形的性质求出CF,得到OF的长,根据三角形中位线定理解答即可【详解】(1)证明:连接,如图:直线与相切于点是的平分线(2)解:连接,连接交于点,如图:AB是的直径,为线段中点,即为直径中点,为线段中点故答案是:(1)详见解析;(2)1【点睛】本题考查了切线的性质、平行线的性质、等腰三角形的性质、勾股定理、相似三角形的判定和性质以及三角形中位线的性质,适当的添加辅助线是解题的关键25、(1),;(2)当时,线段的长度有最大值,最大值为;(3)存在,【分析】(1)由题意,利用待定系数法,先求出二次函数的解析式,然后再求出直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论