数学:《等腰三角形的性质》课件 (冀教版八年级上)_第1页
数学:《等腰三角形的性质》课件 (冀教版八年级上)_第2页
数学:《等腰三角形的性质》课件 (冀教版八年级上)_第3页
数学:《等腰三角形的性质》课件 (冀教版八年级上)_第4页
数学:《等腰三角形的性质》课件 (冀教版八年级上)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数学:15.5?等腰三角形的性质?课件 冀教版八年级上等腰三角形的性质数学多媒体教学课件教学重点、难点教学目的教学过程教学目的: 初步掌握等腰三角形的性质定理; 掌握性质定理的简单应用; 培养学生分析问题、解决问题的能力。教学难点:等腰三角形性质定理的灵活应用。教学重点:等腰三角形的性质定理;教学过程复习引入新知探究应用深化总结提炼复习提问: 什么样的三角形是等腰三角形? 等腰三角形各局部的名称是什么? 看图答复腰腰底边腰和底边的夹角叫做底角两腰所夹的角叫做顶角ACB等腰三角形是特殊的三角形,那么它具有那些特性?新知探究:等腰三角形的性质定理把纸张对折沿线裁剪把剪下部分展开ABC大家一起来研究

2、!提问:ABC是等腰三角形吗?它是轴对称图形吗?B和C有什么关系?轴对称图形有什么性质?对应线段、对应角相等,对应点的连线被对称轴垂直平分。定理1:等腰三角形两底角相等,简写成“等边对等角。一个图形沿某条直线对折后,直线两旁的局部能够完全重合。:在ABC中,AB=AC求证:B=CBCAD证明:过A作底边BC的中线AD, 那么有BD=CD 在ABD和ACD中,AB=AC(已知)BD=CD(已证)AD=AD(公共边)ABDACDSSS B=C全等三角形的对应角相等下面我们一起来证明一下:利用三角形全等来证明两个角相等;辅助线的添加方法。提问:什么是三角形的高、中线和角平分线?请分别画出图1中ABC

3、过顶点A的高线、中线和角平分线。如果三角形是等腰三角形如图2,那么它过点A的三线分别在哪里?ABCDEF图CAB图三角形有几条高线、中线和角平分线?定理:等腰三角形“三线合一 由ABDACD AD平分BCBD=CD AD平分BACBAD=CAD ADBC于DADB=ADC=90 ABCDEFCBAA点运动变化到A点D(E,F)顶角的角平分线、底边上的中线、底边上的高重合ADADAD 进一步观察,不等边三角形不具备这一性质。例 以下图是某房屋屋顶框架的示意图。其中,AB=AC,ADBC,BAC=120,求B,C和BAD的度数。ABCD解:在ABC中, 因为 AB=AC(), 所以 B=C(等边对

4、等角)小结:等腰三角形顶角和底角的关系 顶角+2底角=180因为 BAC+B+C=180 (三角形的内角和为180),且BAC=120,所以 B=C=(180120)=30因为 ADBC(),所以 BAD=BAC=60 (三线合一,即AD也是ABC的角平分线)BCA90以下各等腰三角形顶角的度数如下图。请分别求出它们的底角的度数,并画出各等腰三角形的对称轴。BCA40BCA60顶角是直角的等腰三角形又叫什么?有一个角是60的等腰三角形是什么三角形? :如以下图,BC=AC=AD=DE,且CAD=50,求BAC的大小。ABCED :如以下图,AB=AE,BC=ED, CF=DF,B=E, 求证:AFCD。EDCBAF解:在ACD中, AC=AD ACD =ADC 等边对等角 ACD+CAD+ADC=180(三角形的内角和为180),且CAD=50, ACD =ADC =(180-50)=65 在ABC中,AC=BC ABC =BAC等边对等角又ACD =ABC +BAC三角形的外角等于和它不相邻的两内角的和即 ABC +BAC=65 2BAC=65 BAC=32.5ABCED 解:连结AC和AD, 在ABC和AED中, ABCAEDSAS AC=AD全等三角形对应边相等 即ACD是等腰三角形 又 CF=DF AFCD等腰三角形“三线合一EDCBAFAB=AE(已知) B=E(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论