特种设备检测研究院考试资料_第1页
特种设备检测研究院考试资料_第2页
特种设备检测研究院考试资料_第3页
特种设备检测研究院考试资料_第4页
特种设备检测研究院考试资料_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、热传递有三种方式:传导、对流和辐射。传导热从物体温度较高的部分沿着物体传到温度较低的部分,叫做传导。热传导是固体中热传递的主要方式。在气体或液体中,热传导过程往往和对流同时发生。各种物质都能够传导热,但是不同物质的传热本领不同。善于传热的物质叫做热的良导体,不善于传热的物质叫做热的不良导体。各种金属都是热的良导体,其中最善于传热的是银,其次是铜和铝。瓷、纸、木头、玻璃、皮革都是热的不良导体。最不善于传热的是羊毛、羽毛、毛皮、棉花、石棉、软木和其他松软的物质。液体中,除了水银以外,都不善于传热,气体比液体更不善于传热。对流靠液体或气体的流动来传热的方式叫做对流。对流是液体和气体中热传递的主要方式

2、,气体的对流现象比液体更明显。利用对流加热或降温时,必须同时满足两个条件:一是物质可以流动,二是加热方式必须能促使物质流动。辐射热由物体沿直线向外射出,叫做辐射。用辐射方式传递热,不需要任何介质,因此,辐射可以在真空中进行。地球上得到太阳的热,就是太阳通过辐射的方式传来的。一般情况下,热传递的三种方式往往是同时进行的热力学第二定律 英文名称:second law of thermodynamics 定义:不可能把热从低温物体传到高温物体而不产生其他影响;不可能从单一热源取热使之完全转换为有用的功而不产生其他影响;不可逆热力过程中熵的微增量总是大于零。法拉利电解定律1)法拉利电解第一定律:电流通

3、过电解质溶液时,在电极上析出或溶解的物质的质量m与通过的电荷量Q成正比: m=KQ=KIt 2)法拉利电解第二定律:电极上每析出或溶解1mol质量的任何物质,所需要的电荷量为1法拉第电量,即1F=96500C或26.8Ah;注*:1F=(6.2*1023)粒子*(1.602*10-19)C/粒子=96486C=96486As=26.8Ah_或这样理解:如果电化学反应中得失的电子数为n,则每通过1法拉第电量(1F),应生成1/n(mol)的物质焊接接头 英文名称:welding joint;welded joint 定义1:两个或两个以上零件要用焊接组合的接点。 应用学科: HYPERLINK

4、/view/69126.htm t _blank 电力(一级学科);热工自动化、电厂化学与金属(二级学科) 定义2:两个或两个以上零件用焊接方法连接的接头,包括焊缝、熔合区和热影响区。 应用学科: HYPERLINK /view/21354.htm t _blank 机械工程(一级学科);焊接与切割(二级学科);一般焊接与切割名词(三级学科) HYPERLINK /albums/266795/266795.html l 0$4bac307334768e228601b046 o 查看图片 t _blank 焊接接头焊接接头,指两个或两个以上零件要用焊接组合的接点。或指两个或两个以上零件用焊接方法

5、连接的接头,包括焊缝、熔合区和热影响区。焊接接头1 焊缝区接头金属及填充金属熔化后,又以较快的速度冷却凝固后形成。焊缝组织是从液体金属结晶的铸态组织,晶粒粗大,成分偏析,组织不致密。但是,由于焊接熔池小,冷却快,化学成分控制严格,碳、硫、磷都较低,还通过渗合金调整焊缝化学成分,使其含有一定的合金元素,因此,焊缝金属的性能问题不大,可以满足性能要求,特别是强度容易达到。 2 熔合区熔化区和非熔化区之间的过渡部分。熔合区化学成分不均匀,组织粗大,往往是粗大的过热组织或粗大的淬硬组织。其性能常常是焊接接头中最差的。熔合区和热影响区中的过热区(或淬火区)是焊接接头中机械性能最差的薄弱部位, 会严重影响

6、焊接接头的质量。 3热影响区被焊缝区的高温加热造成组织和性能改变的区域。低碳钢的热影响区可分为过热区、正火区和部分相变区。 (1)过热区 最高加热温度1100以上的区域,晶粒粗大,甚至产生过热组织,叫过热区。过热区的塑性和韧性明显下降,是热影响区中机械性能最差的部位。 (2)正火区 最高加热温度从Ac3至1100的区域,焊后空冷得到晶粒较细小的正火组织,叫正火区。正火区的机械性能较好。 (3)部分相变区最高加热温度从Ac1至Ac3的区域,只有部分组织发生相变, 叫部分相变区。此区晶粒不均匀,性能也较差。 在安装焊接中, HYPERLINK /view/734480.htm t _blank 熔

7、焊焊接方法应用较多。焊接接头是高温热源对基体金属进行局部加热同时与熔融的填充金属熔化凝固而形成的不均匀体。根据各部分的组织与性能的不同,焊接接头可分为三部分。如图2l所示, 焊接接头图示在焊接发生熔化凝固的区域称为焊缝,它由熔化的母材和填充金属组成。而焊接时基体金属受热的影响(但未熔化)而发生金相组织和力学性能变化的区域称为热影响区。熔合区是焊接接头中焊缝金属与热影响区的交界处,熔合区一彀很窄,宽度为0104mm。 影响焊接接头性能的因素焊接接头的机械性能决定于它的化学成分和组织。因此,影响焊缝化学成分和焊接接头组织的因素,都影响焊接接头的性能。 (1)焊接材料手工电弧焊的焊条,埋弧自动焊和气

8、体保护焊等用的 HYPERLINK /view/807527.htm t _blank 焊丝,熔化后成为焊缝金属的组成部分,直接影响焊缝金属化学成分。焊剂也罢影响焊绕的化学成分。 (2)焊接方法不同焊接方法的热源,其温度高低和热量集中程度不同。因此,热影响区的大小和焊接接头组织粗细都不相同,接头的性能也就不同。此外,不同焊接方法,机械保护效果也不同。因此,焊缝金属纯净程度,即有害杂质含量不同,焊缝的性能也会不同。 (3)焊接工艺焊接时,为保证焊接质量而选定的诸物理量(例如焊接电流、电弧电压、 HYPERLINK /view/1484027.htm t _blank 焊接速度、线能量等)的总称,

9、叫焊接工艺参数。 焊接接头型式焊接接头型式主要有对接接头、T形接头、角接接头、搭接接头四种。有时 HYPERLINK /view/2603589.htm t _blank 焊接结构中还有一些其它类型的接头型式,如十字接头、端接接头、卷边接头、套管接头、斜对接接头、锁底对接接头等。在国家标准GB 98588中有详细规定。 一、对接接头两焊件相对平行的接头称为对接接头,这种接头从力学角度看是较理想的接头型式,受力状况较好,应力集中较小,能承受较大的静载荷或动载荷,是焊接结构中采用最多的一种接头型式。 根据焊件厚度、焊接方法和坡口准备的不同,对接接头可分为不开坡口对接接头和开坡口对接接头两种。常见的

10、接头型式见图31所示。 对接接头二、T形接头一焊件的端面与另一焊件表面构成直角或近似直角的接头,称为T形接头。T形接头的型式如图32所示。 T形接头在钢结构件中应用较多,作为一种联系焊缝,它能承受各方向的力和力矩。在选用时尽量避免单面角焊缝,因其根部有较深的缺口,承载能力很低。对于要求较高的焊件可采用K形坡口,根据受力状况决定是否根部焊透,这样比不开坡口而用大焊脚的焊缝经济,而且接头疲劳强度高。焊接缺陷及防治措施1、外观缺陷: 外观缺陷(表面缺陷)是指不用借助于仪器,从工件表面可以发现的缺陷。常见的外观缺陷有咬边、焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。单面焊的根部未焊透等。 A、

11、咬边是指沿着焊趾,在母材部分形成的凹陷或沟槽,它是由于电弧将焊缝边缘的母材熔化后没有得到熔敷金属的充分补充所留下的缺口。产生咬边的主要原因是电弧热量太高,即电流太大,运条速度太小所造成的。焊条与工件间角度不正确,摆动不合理,电弧过长,焊接次序不合理等都会造成咬边。直流焊时电弧的磁偏吹也是产生咬边的一个原因。某些焊接位置(立、横、仰)会加剧咬边。 咬边减小了母材的有效截面积,降低结构的承载能力,同时还会造成应力集中,发展为裂纹源。 矫正操作姿势,选用合理的规范,采用良好的运条方式都会有利于消除咬边。焊角焊缝时,用交流焊代替直流焊也能有效地防止咬边。 B、焊瘤焊缝中的液态金属流到加热不足未熔化的母

12、材上或从焊缝根部溢出,冷却后形成的未与母材熔合的金属瘤即为焊瘤。焊接规范过强、焊条熔化过快、焊条质量欠佳(如偏芯),焊接电源特性不稳定及操作姿势不当等都容易带来焊瘤。在横、立、仰位置更易形成焊瘤。 焊瘤常伴有未熔合、夹渣缺陷,易导致裂纹。同时,焊瘤改变了焊缝的实际尺寸,会带来应力集中。管子内部的焊瘤减小了它的内径,可能造成流动物堵塞。 防止焊瘤的措施:使焊缝处于平焊位置,正确选用规范,选用无偏芯焊条,合理操作。 C、凹坑 凹坑指焊缝表面或背面局部的低于母材的部分。 凹坑多是由于收弧时焊条(焊丝)未作短时间停留造成的(此时的凹坑称为弧坑),仰立、横焊时,常在焊缝背面根部产生内凹。 凹坑减小了焊缝

13、的有效截面积,弧坑常带有弧坑裂纹和弧坑缩孔。 防止凹坑的措施:选用有电流衰减系统的焊机,尽量选用平焊位置,选用合适的焊接规范,收弧时让焊条在熔池内短时间停留或环形摆动,填满弧坑。 D、未焊满 未焊满是指焊缝表面上连续的或断续的沟槽。填充金属不足是产生未焊满的根本原因。规范太弱,焊条过细,运条不当等会导致未焊满。 未焊满同样削弱了焊缝,容易产生应力集中,同时,由于规范太弱使冷却速度增大,容易带来气孔、裂纹等。 防止未焊满的措施:加大焊接电流,加焊盖面焊缝。 E、烧穿 烧穿是指焊接过程中,熔深超过工件厚度,熔化金属自焊缝背面流出,形成穿孔性缺。 焊接电流过大,速度太慢,电弧在焊缝处停留过久,都会产

14、生烧穿缺陷。工件间隙太大,钝边太小也容易出现烧穿现象。 烧穿是锅炉压力容器产品上不允许存在的缺陷,它完全破坏了焊缝,使接头丧失其联接飞及承载能力。 选用较小电流并配合合适的焊接速度,减小装配间隙,在焊缝背面加设垫板或药垫,使用脉冲焊,能有效地防止烧穿。 F、其他表面缺陷: (1)成形不良 指焊缝的外观几何尺寸不符合要求。有焊缝超高,表面不光滑,以及焊缝过宽,焊缝向母材过渡不圆滑等。 (2)错边 指两个工件在厚度方向上错开一定位置,它既可视作焊缝表面缺陷,又可视作装配成形缺陷。 (3)塌陷 单面焊时由于输入热量过大,熔化金属过多而使液态金属向焊缝背面塌落,成形后焊缝背面突起,正面下塌。 (4)表

15、面气孔及弧坑缩孔。 (5)各种焊接变形如角变形、扭曲、波浪变形等都属于焊接缺陷O角变形也属于装配成形缺陷。 2、气孔和夹渣 A、气孔 气孔是指焊接时,熔池中的气体未在金属凝固前逸出,残存于焊缝之中所形成的空穴。其气体可能是熔池从外界吸收的,也可能是焊接冶金过程中反应生成的。 (1)气孔的分类气孔从其形状上分,有球状气孔、条虫状气孔;从数量上可分为单个气孔和群状气孔。群状气孔又有均匀分布气孔,密集状气孔和链状分布气孔之分。按气孔内气体成分分类,有氢气孔、氮气孔、二氧化碳气孔、一氧化碳气孔、氧气孔等。熔焊气孔多为氢气孔和一氧化碳气孔。 (2)气孔的形成机理常温固态金属中气体的溶解度只有高温液态金属

16、中气体溶解度的几十分之一至几百分之一,熔池金属在凝固过程中,有大量的气体要从金属中逸出来。当凝固速度大于气体逸出速度时,就形成气孔。 (3)产生气孔的主要原因母材或填充金属表面有锈、油污等,焊条及焊剂未烘干会增加气孔量,因为锈、油污及焊条药皮、焊剂中的水分在高温下分解为气体,增加了高温金属中气体的含量。焊接线能量过小,熔池冷却速度大,不利于气体逸出。焊缝金属脱氧不足也会增加氧气孔。 (4)气孔的危害气孔减少了焊缝的有效截面积,使焊缝疏松,从而降低了接头的强度,降低塑性,还会引起泄漏。气孔也是引起应力集中的因素。氢气孔还可能促成冷裂纹。 (5)防止气孔的措施 A、清除焊丝,工作坡口及其附近表面的

17、油污、铁锈、水分和杂物。B、采用碱性焊条、焊剂,并彻底烘干。C、采用直流反接并用短电弧施焊。D、焊前预热,减缓冷却速度。E、用偏强的规范施焊。 B、夹渣 夹渣是指焊后溶渣残存在焊缝中的现象。 (1)、夹渣的分类 A、金属夹渣:指钨、铜等金属颗粒残留在焊缝之中,习惯上称为夹钨、夹铜。B、非金属夹渣:指未熔的焊条药皮或焊剂、硫化物、氧化物、氮化物残留于焊缝之中。冶金反应不完全,脱渣性不好。 (2)夹渣的分布与形状有单个点状夹渣,条状夹渣,链状夹渣和密集夹渣 (3)夹渣产生的原因 A、坡口尺寸不合理;B、坡口有污物;C、多层焊时,层间清渣不彻底;D、焊接线能量小;E、焊缝散热太快,液态金属凝固过快;

18、F、焊条药皮,焊剂化学成分不合理,熔点过高;G、钨极惰性气体保护焊时,电源极性不当,电、流密度大,钨极熔化脱落于熔池中。H、手工焊时,焊条摆动不良,不利于熔渣上浮。可根据以上原因分别采取对应措施以防止夹渣的产生。 (4)夹渣的危害点状夹渣的危害与气孔相似,带有尖角的夹渣会产生尖端应力集中,尖端还会发展为裂纹源,危害较大。 3、裂纹 焊缝中原子结合遭到破坏,形成新的界面而产生的缝隙称为裂纹。 A、裂纹的分类 根据裂纹尺寸大小,分为三类:(1)宏观裂纹:肉眼可见的裂纹。(2)微观裂纹:在显微镜下才能发现。(3)超显微裂纹:在高倍数显微镜下才能发现,一般指晶间裂纹和晶内裂纹。 从产生温度上看,裂纹分

19、为两类: (1)热裂纹:产生于AC3线附近的裂纹。一般是焊接完毕即出现,又称结晶裂纹。这种二裂纹主要发生在晶界,裂纹面上有氧化色彩,失去金属光泽。 (2)冷裂纹:指在焊毕冷至马氏体转变温度M3点以下产生的裂纹,一般是在焊后一段时间(几小时,几天甚至更长)才出现,故又称延迟裂纹。 按裂纹产生的原因分,又可把裂纹分为: (1)再热裂纹:接头冷却后再加热至500700时产生的裂纹。再热裂纹产生于沉淀强化的材料(如含CR、MO、V、TI、NB的金属)的焊接热影响区内的粗晶区,一般从熔合线向热影响区的粗晶区发展,呈晶间开裂特征。 (2)层状撕裂主要是由于钢材在轧制过程中,将硫化物(MNS)、硅酸盐类等杂

20、质夹在其中,形成各向异性。在焊接应力或外拘束应力的使用下,金属沿轧制方向的杂物开裂。 (3)应力腐蚀裂纹:在应力和腐蚀介质共同作用下产生的裂纹。除残余应力或拘束应力的因素外,应力腐蚀裂纹主要与焊缝组织组成及形态有关。 B、裂纹的危害裂纹,尤其是冷裂纹,带来的危害是灾难性的。世界上的压力容器事故除极少数是由于设计不合理,选材不当的原因引起的以外,绝大部分是由于裂纹引起的脆性破坏。 C、热裂纹(结晶裂纹) (1)结晶裂纹的形成机理热裂纹发生于焊缝金属凝固末期,敏感温度区大致在固相线附近的高温区,最常见的热裂纹是结晶裂纹,其生成原因是在焊缝金属凝固过程中,结晶偏析使杂质生成的低熔点共晶物富集于晶界,

21、形成所谓”液态薄膜”,在特定的敏感温度区(又称脆性温度区)间,其强度极小,由于焊缝凝固收缩而受到拉应力,最终开裂形成裂纹。结晶裂纹最常见的情况是沿焊缝中心长度方向开裂,为纵向裂纹,有时也发生在焊缝内部两个柱状晶之间,为横向裂纹。弧坑裂纹是另一种形态的,常见的热裂纹。 热裂纹都是沿晶界开裂,通常发生在杂质较多的碳钢、低合金钢、奥氏体不锈钢等材料气焊缝中 (2)影响结晶裂纹的因素 A、合金元素和杂质的影响碳元素以及硫、磷等杂质元素的增加,会扩大敏感温度区,使结晶裂纹的产生机会增多。 B、冷却速度的影响冷却速度增大,一是使结晶偏析加重,二是使结晶温度区间增大,两者都会增加结晶裂纹的出现机会; C、结

22、晶应力与拘束应力的影响在脆性温度区内,金属的强度极低,焊接应力又使这飞部分金属受拉,当拉应力达到一定程度时,就会出现结晶裂纹。 (3)防止结晶裂纹的措施 A、减小硫、磷等有害元素的含量,用含碳量较低的材料焊接。B、加入一定的合金元素,减小柱状晶和偏析。如铝、锐、铁、镜等可以细化晶粒。,C、采用熔深较浅的焊缝,改善散热条件使低熔点物质上浮在焊缝表面而不存在于焊缝中。D、合理选用焊接规范,并采用预热和后热,减小冷却速度。E、采用合理的装配次序,减小焊接应力。附录资料:不需要的可以自行删除 竹材重点知识1竹材及非木质材料作为原料的应用特点与局限A非木质原料应用中具有的优点来源广泛,价格低廉;原料单一

23、,对稳定产品质量有利,生产工艺易于控制;备料工段设备简单(竹材除外);工业生产中动力消耗较木质原料少(加工、干燥等)。B不利因素原料收获季节性强。为保证常年生产,工厂需储备8-9个月的原料,而该类原料体积蓬松,占用地面与空间很大,造成储存场地之困难;原料收购局限性强。非木质原料质地松散,造成收集与运输上的不便,为降低成本,收集半径一般不超过100公里;非木质原料储藏保管较难。非木质原料所含糖类、淀粉及其它易分解的物质较木质材料高,易于虫蛀或产生霉变与腐烂(采取的措施:高密度打包储存,切段堆积储存,干燥后储存,喷洒药剂储存等,但增加了工序和成本);非木质原料含杂杂物多(蔗渣含20%以上的蔗髓,棉

24、杆含残花和泥沙,芦苇有苇髓和叶鞘,稻壳含米坯等),对产品质量有影响,生产前应分离,增加了工序与成本;其它尚未解决的问题:棉杆皮韧性大,缠绕设备造成堵塞、起火;原料易水解,湿法生产中造成的污染大;稻壳板硬度大,对刀具磨损十分严重等,目前尚无参考模式,有待进一步研究克服。2.分布概况: 竹子是森林资源之一。中国竹类资源分为四个区:黄河-长江竹区、长江-南岭竹区、华南竹区、西南高山竹区。3地下茎:竹类植物在土中横向生长的茎部,有明显的分节,节上生根,节侧有芽,可萌发而为新的地下茎或发笋出土成竹,俗称竹鞭,亦名鞭茎。因竹种不同,地下茎有下列三种类型:单轴型、合轴型、复轴型。4.竹秆:竹秆是竹子的主题部

25、分,分为秆柄、秆基和秆茎三部分。1)秆柄:竹秆的最下部分,与竹鞭或母竹的秆基相连,细小、短缩、不生根,俗称螺丝钉或龙眼鸡头,是竹子地上和地下系统连接输导的枢纽。2)秆基:竹秆的入土生根部分,由数节至10数节组成,节间短缩而粗大。秆基各节密集生根,称为竹根,形成竹株独立根系。秆基、秆柄和竹根合称为竹蔸。3)秆茎:竹秆的地上部分,端正通直,一般形圆而中空有节,上部分枝着叶。每节有两环,下环为箨环,又叫鞘环,是竹箨脱落后留下的环痕;上环为秆环,是居间分生组织停止生长后留下的环痕。两环之间称为节内,两节之间称为节间。相邻两节间有一木质横隔,称为节隔,着生于节内。竹秆的节、节间形状和节间长度因竹种而有变

26、化。5.竹子各部位之间的关系 竹连鞭,鞭生芽,芽孕笋,笋长竹,竹又养鞭,循环增殖,互为因果,鞭竹息息相关的统一有机整体。6竹林的采伐竹林采伐时必须做到“采育兼顾”,才能达到竹林永续利用、资源永不枯竭之目的。正确确定伐竹年龄、采伐强度、采伐季节、采伐方法四个技术环节是竹林采伐的关键所在。7.采伐竹龄:竹林为异龄林,一般只能采取龄级择伐方式,根据竹类植物的生长发育规律,竹笋成竹后,秆形生长基本结束,体积不再有变化,但材质生长仍在进行,密度和力学强度仍在增长和变化,根据其变化情况可分为三个阶段,即材质增进期,材质稳定期和材质下降期。竹子的采伐年龄最好在竹材材质稳定期,遵循“存三(度)砍四(度)不留七

27、(度)”的原则。8.伐竹季节:春栽夏劈秋冬伐。 一般竹林应该在冬季采伐,应在出笋当年的晚秋或冬季(小年春前)。花年竹林,应砍伐竹叶发黄、即将换叶的小年竹,而不应砍伐竹叶茂密正在孵笋的大年竹;丛生竹林,一般夏秋季节出笋,采伐季节选在晚秋或早春,使新竹能发枝展叶。 原因:a.该季节竹子处于休眠状态,竹液流动慢,同化作用较弱; b.可溶性物质变成复杂的有机物储存,竹材力学性质好,不易虫蛀; c.冬季,林地中主要害虫处于越冬状态,不会对采伐后的竹林造成伤害; d.该季节新竹尚未发出,可避免采伐时造成损伤。9.竹材的储藏与保管具体要求:1)按照不同质量分类保管;2)按照规格大小,分别存放;3)先进先出,

28、推陈出新;4)防虫防蛀,喷熏药物。10.竹材的缺陷及其发生规律:1)虫蛀和霉腐一般发生规律如下:a.竹黄较竹青严重;b.6-7年生竹材较轻,3-5年生以下较重;c.冬季采伐的较轻,秋季次之,春季采伐的较重;e.山地生长的较平地生长的轻;f.通风透光储藏遭受损害的较少,阴暗不透风的则多。11.竹壁:竹秆圆筒状的外壳。一般根部最厚,至上部递减,自内向外分为竹青、竹肉和竹黄三个部分。 12.影响竹材密度的因素:竹种:与其地理分布有一定的关系,分布在气温较低、雨量较少的北部地区的竹材(如刚竹)密度较大,反之,则密度较小。竹龄:随着年龄的增长,密度不断的提高和变化(因竹材细胞壁和内容物是随竹龄的增加而逐

29、渐充实和变化的),可根据其规律性作为确定竹材合理采伐年龄的理论依据之一。立地条件:气候温暖多湿,土壤深厚肥沃的条件下生长好,竹竿粗大,但组织疏松,维管束密度小,从而密度小,反之密度大。竹秆部位:同一竹种,自基部至稍部,密度逐渐增大,同一高度上,竹壁外侧高于内侧,有节部分大于无节部分。13竹材特性竹材与木材相比,具有强度高、韧性大,刚性好、易加工等特点,使竹材具有多种多样的用途,但这些特性也在相当程度上限制了其优越性的发挥,竹材的基本特性如下:1)易加工,用途广泛:剖篾、编织、弯曲成型、易染色漂白、原竹利用等;2)直径小,壁薄中空,具有尖削度:强重比高,适于原竹利用,但不能像木材一样直接进行锯切

30、、刨切和旋切,经过一定的措施可以获得高得率的旋切竹单板和纹理美观的刨切竹薄木;3)结构不均匀:给加工利用带来很多不利影响(如竹青、竹黄对胶粘剂的湿润、胶合性能几乎为零,而竹肉则有良好的胶合性能;4)各向异性明显:主要表现在纵向强度大,横向强度小,容易产生劈裂5)易虫蛀、腐朽和霉变:竹材比木材含有更多的营养物质造成;6)运输费用大,难以长期保存:壁薄中空,体积大,车辆实际装载量小,不宜长距离运输;易虫蛀、腐朽和霉变,不宜长时间保存;砍伐季节性强,规模化生产与原竹供应之间矛盾较为突出。14. 竹材人造板的构成原则:以克服竹材本身固有的某些缺陷,使竹材人造板具有幅面大且不变形、不开裂等特点为出发点的

31、,主要遵循以下两个原则:对称原则:对称中心平面两侧的对应层,竹种、厚度、层数、纤维方向、含水率、制造方法相互对应。奇数性原则:主要针对非定向结构的多层人造板15.竹材人造板的结构特性:1)结构的对称性:尽可能的克服各向异性2)强度的均齐性:材料在各个方向强度大小的差异,以均齐系数表达(竹纤维板、碎料板趋于1)。 3)材质的均匀性:能提高板材外观质量,也可减少应力集中造成的破坏。(板材优于竹材,结构单元越小的板材均匀性越好).16.胶层厚度:不产生缺胶的情况下,越薄越好(2050微米)?1)薄胶层变形需要的应力比厚胶层大2)随着胶层厚度的增加,流动或蠕变的几率增大3)胶层越厚,由膨胀差而引起界面

32、的内应力与热应力大4)坚硬的胶粘剂,胶合界面在弯曲应力的作用下,薄胶层断裂强度高5)胶层越厚,气泡或其他缺陷数量增加,早期破坏几率增加17. 竹材胶合板:是将竹材经过高温软化展平成竹片毛坯,再以科学的、比较简便的、连续化的加工方法和尽可能少改变竹材厚度和宽度的结合形式获得最大厚度和宽度的竹片,减少生产过程中的劳动消耗和胶粘剂用量,从而生产出保持竹材特性的强度高、刚性好、耐磨损的工程结构用竹材人造板。竹材的高温软化-展平是该项工艺的主要特征。A原竹截断截断:先去斜头;由基至稍,分段截取;截弯存直,提高等级;留足余量。B竹片软化的目的:将半圆形的竹筒展平,则竹筒的外表面受压应力,内表面受拉应力,其

33、应力大小为:=ES/2r减小E值是减小竹材展平时反向应力的有效手段,从而可以减少展平时竹材内表面的裂缝的宽度和深度。减小竹材弹性模量的方法和措施统称为竹材软化。C.软化方法 :在目前的技术条件下,提高竹筒含水率和温度是提高竹材本身塑性、减小竹材弹性模量,从而达到减小展开过程中方向弯曲时拉伸应力的有效措施。D.刨削加工目的:1)去青去黄,改善竹材表面性能,提高胶粘效果; 2)使竹片全长上具有同一厚度,以获得较高胶粘性能和较小的厚度偏差。E.竹片干燥: 实践证明,使用PF时,竹片的含水率应低于8%,而使用UF时,应小于12%,才能获得理想的胶合强度。预干燥:目的为了提高竹片的干燥效率,主要设备是高

34、效螺旋燃烧炉竹片干燥窑,干燥周期较长,一般10-12小时,终含水率由35-50%降至12-15%。定型干燥:因竹片是由圆弧状经水煮、高温软化、展平而成平直状,但在自然状态中仍具有较大的弹性恢复力,故需采用加压的干燥和设备。F组坯:将面、背板竹片和涂过胶的芯板竹片组合成板坯的过程成为组坯。1)板坯厚度的确定:s=100s合/(100-)式中:s为板坯厚度(各层竹片厚度之和,mm),s合为竹材胶合板厚度(mm),为板坯热压时的压缩率(%)。板坯的压缩率与热压时的温度、压力和竹材的产地、竹龄等多种因素有关。通常温度为140-145,单位压力为3.0-3.5Mpa时,板坯的压缩率为13.0%-16.0

35、%。2)组坯操作注意事项:a. 面、背板竹片应预先区分好。b.组坯时芯板与面、背板竹片纤维方向应互相垂直。面板与背板竹片组坯时,竹青面朝外,竹黄面朝内;芯板竹片组坯时,为防止竹材胶合板由于结构不对称而产生变形,应将每张竹片的竹青、竹黄的朝向依次交替排列。c.竹片厚度较大,宽度较小(平均100毫米左右),涂胶量不大,因而其吸水膨胀值(绝对值)不大,故芯板组坯时不必留有吸水膨胀后的间隙,只需将竹片涂胶后紧靠排列即可。d.组坯时面、背板及芯板竹片组成的板坯要做到“一边一角一头”平齐,可为锯边工序提供纵边和横边两个基准面。G热压胶合1)工艺过程:竹片涂胶以后组成板坯,经过加温加压使胶粘剂固化,胶合成竹

36、材胶合板的过程称为热压胶合,这是一个十分复杂的物理和化学变化过程。可压力变化情况可分为三个阶段:A第一阶段:从放第一张板坯进入热压板至全部热压板闭和并达到要求的单位压力,称为自由加热期。B第二阶段:从热压板内的板坯达到要求的单位压力至降压开始,称为压力保持期;C第三阶段:从热压板的板坯降压开始到热压板全部张开,称为降压期。在降压期,因压力降低,板坯中的水蒸气急剧向外溢散,同时呈过热状态的水也很快变为水蒸气,因此产生板坯内外压力不平衡的现象,降压越快,压力不平衡就越大,严重的可使胶层剥离,即“鼓泡”,层数越多,鼓泡现象越多。所以降压时务必缓慢进行,应在板坯内外的压力基本保持平衡的状态下进行,为防

37、止“鼓泡”现象的发生,通常要求实行三段降压,即:由工作压力降至“平衡压力”(即与板坯内部蒸汽压力保持平衡的外部压力,PF胶一般为0.3-0.4Mpa,这一阶段的降压速度可以快一点,一般3层板掌握在10-15s内完成);由“平衡压力”降至零,该阶段易发生鼓泡或“脱胶”,降压速度要缓慢,要求降压速度与水蒸气从板坯中排除的速度相适应,一般3层板约在30-50s内完成,多层板应适当延长;由零到热压板完全张开,该段可打开阀门,以最大速度卸载,使热压板张开。应注意的是压机最下面一个工作间隔中的板坯,在表显示为零的时候,实际上还承受着所有热压板自重的压力,因此压板张开要适当放慢速度,以防“鼓泡”。2)影响胶合质量的因素:A.压力的影响:压力过大,重者压溃被胶合的材料,破坏其自身的结构,轻者加大了热压时的压缩百分率,增大了材料的消耗,降低了竹材的利用率。适宜的单位压力是保证胶合质量和材料利用率的重要因素。目前生产中使用的单位压力是3.0-3.5Mpa,板坯的压缩率为13-16%,随着竹片加工精度的提高,热压时的单位压力可随之下降。B.温度的影响:温度是促使胶粘剂固化的重要条件。热压

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论