版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、附录1 .电火花加工电火花加工(EDM),顾名思义,它是通过脉冲直流电源不断产生火花放电 来去除工件材料的,且在工件与工具之间有绝缘液体介质。电火花加工的工作原理如简图所示。工具夹在卡盘上,卡盘与由伺服进给 系统控制的主轴相连。工件放在充满绝缘液体介质的工作槽中。在工作表面至少 要维持50mm的距离,是为了消除火灾的隐患。工具和工件与脉冲电源的两输出 端相连。绝缘液体介质通过工具电极的小孔,经油泵加压,强迫循环的。伺服系 统控制电火花间隙为0.025-0.05mm。电火花加工的电源首先是将输入的电源通过晶体整流管转化为直流电源, 直流电源又受到通过数字多谐振荡电路转换来的晶体管的控制。输出的高
2、频脉冲 作用到工具和工件上,产生电火花来去除工件材料。每个电火花瞬间产生高达12000 C的局部高温,这些热量使部分绝缘液体 介质蒸发,也使工件表面蚀除一小部分金属,在工件表面形成一个小凹坑。由于 在极间距离相对最近击穿放电,工件表面逐渐被蚀除掉,工具的形状复制到工件 上了。在此过程中形成的一些浓缩的金属小屑被流动的绝缘液体介质排除出去。 随着金属被蚀除掉,工具电极通过饲服进给系统控制向工件进给。电火花加工中每个脉冲延续的时间只有几个微秒,经过不断的重复放电, 工件和工具电极有一样的腐蚀形状。随着电火花加工的进行,工具电极不断向工 件进给,直到加工完成,一直保持一定的放电间隙。应用电火花加工能
3、加工任何硬度的导电材料,且大部分用于加工不规则 的孔,槽和型腔。那些刚度低的工件也可以加工。电火花加工还可加工出各种形 状的孔以及曲面上角度很小的孔,且不存在工具漂移的问题。目前,电火花加工极广泛地用于模具制造,特别是压力机模具,挤压模, 锻模和铸模等。通过模型复制制造出来的石墨电极也经常使用。电火花加工的优点就是工具在硬化处理后仍能加工出来,因此能达到很高 的精度。硬质合金的工具在烧结后也能加工出来。电火花加工能有效的加工出又小又深的孔。已经在直径只有0.3mm的材料 上钻出深20mm甚至更深的孔。经过有效的吹氮脱气,可以加工出宽径比为100:1的孔。电火花加工已成功地用于已淬硬喷油嘴的极小
4、孔的加工,能在喷油嘴周 围精确的钻出大量的孔。数字控制数控是一种用数字控制机床各部件运动的方法,通过直接向系统输入指令 代码(数字和字母)来完成的。系统自动将这些指令代码转化成信号输出。这些 信号依次控制机床各种部件的运动,比如主轴的启动和停止,刀具的转换,沿指 定路径移动刀具和工件,控制切削液的通断等等。为了说明数控机床的重要性,我们来简单回顾一下传统机床的加工过程。操 作者研究零件工作图后,调整合适的加工参数(如切削速度,进给量,切削深度, 切削液等等),安排加工顺序,然后将工件夹紧在夹具(如卡盘或夹头)上,再 开始加工。根据所规定的工件形状和尺寸精度,这种加工通常需要熟练的操作工。 而且
5、,其后续加工是由各个操作者完成的。由于存在不可避免的人为误差,即便 由同一个人加工出来的零件也不可能完全相同。因此,零件的质量就可能取决于 操作者的操作水平,甚至取决于该工人在不同时期或不同时间的状态。由于我们 越来越关注加工质量和降低加工成本,所以我们不再允许存在零件偏差和产品的 质量影响,而通过数控加工就可以消除以上这些情况。我们可以通过以下的例子来说明数控加工的重要性。假如要在图示位置的零 件上钻这几个孔,当传统的手工操作机床加工此零件时,操作者可选图示三种方 法中的任一种,使钻头与工件上的点相对应着,然后钻这些孔。假如要加工100 个同样形状,同样尺寸,同样精度的零件,很明显,操作者会
6、觉得很枯燥,因为 操作者要一遍又一遍重复同样的动作,而且,由于各种原因。有些零件加工出来 的不一样的可能性是很高的。我们进一步假设,在操作过程中,零件的加工要求 要改变,现在要在不同的位置加工出10个孔,机械师必须马上调整机床,这样 既浪费时间又增加了加工误差。而数控机床能够重复而准确地加工工件,而且可 通过简单地输入不同程序来加工不同的零件。因此,使用数控机床就可以轻而易 举地完成此类加工。在数控系统中,与加工过程各种相关的数据如工件的定位,切削速度,进给 量和切削液,储存在磁盘,盒式录音带,软盘,硬盘,纸带或塑料纸(热塑性树 脂)上。将数据存储在25mm宽的穿孔纸带或塑脂带上,这种数据存储
7、方法使用 最早并沿用至今。数控的概念就是纸带上的孔表示以字母代码表达的特定信息。 这些孔的打开和关闭由控制面板的感应元件控制,然后驱动继电器和其他机械导 向装置。一些复杂操作如切削具有不同轮廓,外形的零件或在钻床上刻模也可以 实现了。数控加工在制造各方面有着深远的影响,特别在以下的加工领域中广泛使 用:加工中心。 铣,车,镗,钻,磨。放电加工,激光加工和电子束加工。 水射流切削。冲孔和分段冲模。弯管和金属旋压点焊,其他焊接和切削加工。装配。数控机床广泛使用在小型或大型机械制造中,加工出品种繁多,少量或中等批量(小于或等于500)的零件。现在也可以用数控改装旧的机床了。 优点和局限性数控加工与传
8、统的机加工相比,具有以下的优点:操作简便,能加工出尺寸精度高的复杂形状的工件,重复性好,能 降低材料的浪费,生产速度快,生产效率高,加工质量高。降低工具的成本,因为一些模型和工件夹具都不需要了。通过微机和数字输出,很容易调整机床。每一步工序可以同时加工所多个零件,与传统的机加工相比,装夹 和加工的时间减少了。图样的转换也更容易了。能很快准备好加工工序,微处理器在任何时候都能存储这些工序, 手工计算已经不需要了。可以快速加工出原来的模型。不需要更多的操作者技术了,操作者在车间有更多的时间从事其他 工作了。数控加工的最大局限性就是设备的成本相对比较高,需要程序控制,特别 的维护和经过专门培训的操作
9、者。因为数控机床系统复杂,且每个零部件都比 较昂贵,因此这种维护是必不可少的。然而,这些局限性在经济上经常比数控 加工的优点更为突出。3 .计算机辅助设计/计算机辅助制造的范围计算机辅助设计是利用计算机系统更方便对设计进行创造,修改,分析, 优化设计等等。在这里,计算机系统包括硬件和软件。计算机辅助制造是利用计 算机系统对制造车间进行设计,管理,操作控制。通过考虑产品设计和制造完成 的整个过程,我们可以对计算机辅助设计/计算机辅助制造的范围做一个评估。 图中内圈为产品生产过程中的各个环节,外圈则是在产品基本生产环节上所增加 的计算机辅助设计/计算机辅助制造的功能。基于市场和顾客的需求,生产商家
10、必须构思产品,这样可以对原产品进行 改进。然后这产品进行详细设计,通过各种需要的设计分析,准备好图纸和零件 明细表。其次,要对各个零部件的生产作出规划,其中包括安排加工顺序,选择 机床,估算生产周期,确定工艺参数(如进给量和切削速度)。当产品进行生产 时,按照整个制造的安排来确定每个零部件每个步骤制造的时间。根据安排表来 保证产品制造和控制的质量,然后把成品卖给顾客。计算机程序已经或者正在开发,这样方便了生产循环的每个环节。计算机 辅助设计和绘图技术也得到开发,这就要求产品的几何模型和组成在计算机里生 成。这模型可以用特定的软件包,比如有限元法受力分析,机械设计等等来分析。 接下来,通过计算机
11、辅助绘图软件和绘图仪可以画出图纸和零件明细表。包含有 编制数控程序功能的计算机辅助工艺过程系统设计,可以根据零件的几何参数和 装配要求自动地编出作业计划,进行计算,生成加工指令。为了达到生产管理的目标,必须需要大量数据和进行众多相对简单的计算。 例如,将某一生产周期所需物料的预测量减去库存量,便可确定该物料的定货量。 许多商业软件包可以提供时序安排,库存管理,车间管理包括物质需求计划体系。 在车间里,计算机更广泛地用于对每台机器的监视和控制。在产品生产环节中,时间标度所需的程序数据与各种计算机应用的指令是 不相同的。例如,对每一种新产品及其工艺过程进行设计,整个工作所需的时间 及数周乃至几年。
12、时间安排和生产控制工作在一年的每个生产时期(通常为一星 期)都要重复。在机器控制条件下,在许多情况下,那些指令出现的时间只会持 续微秒甚至纳秒。计算机辅助制造最大的目标就是在生产环节中各种活动成为一元化系统。 数据能自动从一种功能转换为另一种功能。这就有了计算机集成制造这个概念。 最后的目标就是无纸传送信息。在每个生产周期对产品及工艺过程设计,有对集 成最适合的功能。这种集成是很有必要的,因为设计过程中生成的几何参数是在 制定合适的制造过程和作业计划时确定工艺过程所需的基本输入数据之一。因 此,在工艺过程设计中的各个活动可以共享同一个设计和制造数据库。有了这样 一个系统,产品和零部件的几何模型
13、在设计过程中就可以设计出来。这些数据可 以通过以下途径存取,包括数控程序,工艺过程设计,自动控制程序。通过这些 活动得到的技术和工作计划也存到数据库中。产品控制和库存控制程序也可存取 工作计划,预算时间,零件列表等等。翻译Electrical-Discharge MachiningElectrical-discharge machining (EDM),or spark machining, as it is also called, removes material with repetitive spark discharges from a pulsating DC power supp
14、ly, with a dielectric flowing between the work piece and the tool.The principle of the EDM process is illustrated by the simplified diagram. The tool is mounted on the chuck attached to the machine spindle whose motion is controlled by a servo-controlled feed drive. The workpiece is placed in a tank
15、 filled with a dielectric fluid; a depth of at least 50mm over the work surface is maintained to eliminate the risk of fire. The tool and workpiece are connected to a pulsating DC power supply. Dielectric fluid is circulated under pressure by a pump, usually through a hole or holes in the tool elect
16、rode. A spark gap of about 0.025 to 0.05mm is maintained by the servomotor.In power supplies for EDM the input power is first converted into continuous DC power by conventional solid-state rectifiers. The flow of this DC power is then controlled by a bank of power transistors which are switched by a
17、 digital multivibrator oscillator circuit. The high-power pluses output is then applied to the tools and work piece to produce the sparks responsible for material removal.Each spark generates a localized high temperature on the order of 12000 C in its immediate vicinity. This heat caused part of the
18、 surrounding dielectric fluid to evaporate; it also melts and vaporizes the metal to form a small crater on the work surface. Since the spark always occurs between the points of the tool and work piece that are closest together, the high spots of the work are gradually eroded, and the form of the to
19、ol is reproduced on the work .The condensed metal globules, formed during the process, are carried away by the flowing dielectric fluid. As the metal is eroded, the tool is fed toward the work piece by a servo-controlled feed mechanism.Each pulse in the EDM cycle lasts for only a few microseconds. R
20、epeated pulses, at rates up to 100000 per second, result in uniform erosion of material from the work piece and from the electrode. As the process progressed, the electrode is advanced by the servo drive toward the work piece to maintain a constant gap distance until the final cavity is produced.App
21、lications Electrical-discharge machining can be used for all electrically conducting materials regardless of hardness. The process is most suited to the sinking of irregularly shaped holes, slots, and cavities. Fragile work pieces can be machined without breakage. Holes can be of various shapes and
22、can be produced at shallow angles in curved surfaces without problems of tool wander.The EDM process finds greatest application at present in toolmarking, particularly in the manufacture of press tools, extrusion dies, forging dies, and molds. Graphite electrodes produced by copy milling from patter
23、ns are often used.A great advantage of EDM is that the tool or die can be machined after it is hardened and hence great accuracy can be achieved. Tools of cemented carbide can be machined after final sintering, which eliminates the need for an intermediate partial sintering stage, thus eliminating t
24、he inaccuracies resulting from final sintering after holes, slots, and so on, are machined.Electrical-discharge machining can be used effectively to drill small high-aspect-ratio holes. Diameters as small as 0.3mm in material 20mm or more in thickness can be readily achieved. With efficient flushing
25、, holes with aspect ratios as high as 100:1 have been produced. The process has been used successfully to produce very-small-diameter holes in hardened fuel-injector nozzles. Varying numbers of holes in a precise patten can be drilled around the injector tip.Numerical ControlNumerical control (NC) i
26、s a method of controlling the movements of machine components by directly inserting coded instructions in the form of numerical data (numbers and data) into the system. The system automatically interprets these data and converts it to output signals. These signals, in turn control various machine co
27、mponents, such as turning spindles on and off, changing tools, moving the workpiece or the tools along specific paths, and turning cutting fluids on and off.In order to appreciate the importance of numerical control of machines, lets briefly review how a process such as machining has been carried ou
28、t traditionally. After studying the working drawing of a part, the operator sets up the appropriate process parameters(such as cutting speed, feed, depth of cut, cutting fluid, and so on), determines the sequence of operations to be performed, clamps the workpiece in a workholding device such as a c
29、huck or collet, and proceeds to make the part. Depending on part shape and the dimensional accuracy specified, this approach usually requires skilled operators. Furthermore, the machining procedure followed may depend on the particular operator, and because of the possibilities of human error, the p
30、arts produced by the same operator may not all be identical. Part quality may thus depend on the particular operator or even the same operator on different days or different hours of the day. Because of our increased concern with product quality and reducing manufacturing costs, such variability and
31、 its effects on product quality are no longer acceptable. This situation can be eliminated by numerical control of the machining operation.We can illustrate the importance of numerical control by the following example. Assume that holes have to be drilled on a part in the positions shown in the pict
32、ure. In the traditional manual method of machining this part, the operator positions the drill with respect to the workpiece, using as reference points any of the three method shown. The operator then proceeds to drill these holes. Let s assume that 100 parts, having exactly the same shape and dimen
33、sional accuracy, have to be drilled. Obviously, this operation is going to be tedious because the operator has to go through the same motions again and again. Moreover, the probability is high that, for various reasons, some of the paths machined will be different from others. Lets further assume th
34、at during this production run, the order for these paths is changed, so that 10 of the paths now require holes in different positions. The machinist now has to reset the machine, which will be time consuming and subject to error. Such operations can be performed easily by numerical control machines
35、that are capable of producing parts repeatedly and accurately and of handling different parts by simply loading different part programs.In numerical control, data concerning all aspects of the machining operation, such as locations, speeds, feeds, and cutting fluid, are stored on magnetic tape ,cass
36、etts, floppy or hard disks, or paper or plastic (Mylar, which is a thermoplastic polyester) tape. Data are stored on punched 25mm wide paper or plastic tape, as originally developed and still used. The concept of NC control is that holes in the tape represent specific information in the form of alph
37、anumeric codes. The presence (on) or absence (off) of these holes is read by sensing devices in the control panel, which then actuate relays and other devices (called hard-wired controls). These devices control various mechanical and electrical systems in the machine. This method eliminated manual s
38、etting of machine positions and tool paths or the use of templates and other mechanical guides and devices. Complex operations, such as turning a part having various contours and die sinking in a milling machine, can be carried out.Numerical control has had a major impact on all aspects of manufactu
39、ring operations. It is a widely applied technology, particularly in the following areas:Machining centers.Milling, turning, boring, drilling, and grinding.Electrical-discharge, laser-beam, and electron-beam machining.Water-jet cutting.Punching and nibbling.Pipe bending and metal spinning.Spot weldin
40、g and other welding and cutting operation.Assembly operations.Numerical control machines are now used extensively in small-and-medium-quantity (typically 500 parts or less) of a wide variety of parts in small shops and large manufacture facilities. Older machines can be retrofitted with numerical co
41、ntrol.Advantages and Limitations Numerical control has the following advantages over conventional method of machine control:Flexibility of operation and ability to produce complex shapes with good dimensional accuracy, repeatability, reduced scrap loss, and high production rates, productivity, and p
42、roduct quality.Tooling costs are reduced, since templates and other fixtures are not required.Machine adjustments are easy to make with minicomputer and digital readout.More operations can be performed with each setup, and less lead time for setup and machining is required compared to conventional m
43、ethods. Design changes are facilitated, and inventory is reduced.Programs can be prepared rapidly and can be recalled at any time utilizing microprocessors. Less paperwork is involved.Faster prototype production is possibleRequired operator skill is less, and the operator has more time to attend to
44、other tasks in the work area.The major limitations of NC are the relatively high cost of the equipment and the need for programming and special maintenance, requiring trained personal. Because NC machines are complex systems, breakdowns can be very costly, so preventive maintenance is essential. How
45、ever, these limitations are often easily outweighed by the overall economic advantages of NC.Scope of CAD/CAMComputer-aided design is the use of computer systems to facilitate the creation, modification, analysis, and optimization of a design. In this context the term computer system means a combina
46、tion of hardware and software. Computer-aided manufacturing is the use of a computer system to plan, manage, and control the operation of a manufacturing plant. An appreciation of the scope of CAD/CAM can be obtained by considering the stages that must be completed in the design and manufacture of a
47、 product, as illustrate by the product cycle shown. The inner loop of this figure includes the various steps in the product cycle and outer loop show some of the functions of CAD/CAM superimposed the product cycle.Based on market and customer requirements, a product is conceived, which may well be a
48、 modification of previous products. This product is then designed in detail, including any required design analysis, and drawings and parts lists are prepared. Subsequently, the various components and assemblies are planned for production, which involves the selection of sequences of processes and m
49、achine tools and the estimation of cycle times, together with the determination of process parameters, such as feeds and speeds. When the product is in production, scheduling and control of manufacture take place, and the order and timing of each manufacturing step for each component and assembly is
50、 determined to meet an overall manufacturing schedule. The actual manufacturing and control of product quality then takes place according to the schedule and the final products are delivered to the customers.Computer-based procedures have been or are being developed to facilitate each of these stage
51、s in the product cycle. Computer-aided design and drafting techniques have been developed. These allow a geometric model of the product and its components to be created in the computer. This model can then be analyzed using specialized software packages, such as those for finite element stress analy
52、sis, mechanisms design, and so on. Subsequently, drawings and parts lists can be produced with computer-aided drafting software and plotters. Computer-aided process-planning systems, including the preparation of NC programs, are available that produce work plans, estimates, and manufacturing instruc
53、tion automatically from geometric descriptions of the components and assemblies.For scheduling and production control, large amounts of data and numerous relatively simple calculations must be carried out. One example is the determination of order quantities by subtracting stock levels from forecast
54、s of the number of items required during a particular manufacturing period. Many commercial software packages are available for scheduling, inventory control, and shop floor control, including materials requirements planning (MRP) system. At the shop floor levels computers are used extensively for the control and monitoring of individual machines.There is a difference in the time scale required for processing data and the issuing of instruction for these various applications of computers in the product cycle. For example, design and process-planning functio
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度涵洞施工劳务分包合同6篇
- 2024年度北京城市更新改造项目合同
- 2024年度地铁车辆段租赁合同
- 2024年度美甲店员工福利合同
- 2024年度技术研发合同:我方为委托方乙方为研发方
- 2024年度股权激励合同的保密条款
- 2024年度电力线路铁塔焊接工程合同2篇
- 注塑部安全培训
- 金太阳课件演讲
- 2024年度研发合作合同:新型材料研发合作与知识产权共享协议
- 关于定向询价异议的申请书
- 疼痛护理专项考核试题及答案
- 智慧城市防洪排涝体系的智能监测与预警策略
- 水稻杂交育种技术
- 外研版新标准九年级英语上册作业设计案例
- 肠穿孔应急预案
- 陕西省潼关县潼峪-蒿岔峪金矿矿山地质环境保护与土地复垦方案
- 振动盘使用说明
- 髋臼周围截骨术治疗成人髋关节发育不良
- 非外资独资或外资控股企业书面声明
- 2023上海外国语大学三亚附属中学第一次招聘19人笔试备考题库及答案解析
评论
0/150
提交评论