2021-2022学年陕西省彬州市彬中数学高二第二学期期末达标检测试题含解析_第1页
2021-2022学年陕西省彬州市彬中数学高二第二学期期末达标检测试题含解析_第2页
2021-2022学年陕西省彬州市彬中数学高二第二学期期末达标检测试题含解析_第3页
2021-2022学年陕西省彬州市彬中数学高二第二学期期末达标检测试题含解析_第4页
2021-2022学年陕西省彬州市彬中数学高二第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若,则()ABCD2已知数列的前项和为,则“”是“数列是等比数列”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件3函数的最小正周期是,若将该函数的图象向右平移个单位长度后得到的函数图象关于点对称,则函数的解析式

2、为ABCD4已知函数,则,的大小关系是()ABCD5已知函数,的图象分别与直线交于两点,则的最小值为 ABCD6在等比数列中,已知,则的值为( )ABCD7已知下列说法:对于线性回归方程,变量增加一个单位时,平均增加5个单位;甲、乙两个模型的分别为0.98和0.80,则模型甲的拟合效果更好;对分类变量X与Y,随机变量的观测值k越大,则判断“X与Y有关系”的把握程度越大;两个随机变量的线性相关性越强,则相关系数就越接近1其中说法错误的个数为()A1B2C3D48设函数在上可导,其导函数为,且函数在处取得极大值,则函数的图象可能是ABCD9将4名学生分配到5间宿舍中的任意2间住宿,每间宿舍2人,则

3、不同的分配方法有()A240种B120种C90种D60种10设,向量,且,则( )ABCD11已知,且,则a=( )A1B2或1C2D212欧拉公式:为虚数单位),由瑞士数学家欧拉发明,它建立了三角函数与指数函数的关系,根据欧拉公式,( )A1BCD二、填空题:本题共4小题,每小题5分,共20分。13假设每一架飞机的每一个引擎在飞行中出现故障概率均为,且各引擎是否有故障是独立的,已知4引擎飞机中至少有3个引擎飞机正常运行,飞机就可成功飞行;2引擎飞机要2个引擎全部正常运行,飞机才可成功飞行.要使4引擎飞机比2引擎飞机更安全,则的取值范围是_14函数部分图象如图,则函数解析式为_.15设为曲线上

4、的点,且曲线在点处切线倾斜角的取值范围为,则点横坐标的取值范围为_16已知函数的导函数为,且,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)若存在常数(),使得对定义域内的任意,(),都有成立,则称函数在其定义域上是“利普希兹条件函数”.(1)判断函数是否是“利普希兹条件函数”,若是,请证明,若不是,请说明理由;(2)若函数()是“利普希兹条件函数”,求常数的最小值;(3)若()是周期为2的“利普希兹条件函数”,证明:对任意的实数,都有.18(12分)(1)若展开式中的常数项为60,求展开式中除常数项外其余各项系数之和;(2)已知二项式(是虚数单位,)的展开的

5、展开式中有四项的系数为实数,求的值.19(12分)在极标坐系中,已知圆的圆心,半径(1)求圆的极坐标方程;(2)若,直线的参数方程为(t为参数),直线交圆于两点,求弦长的取值范围.20(12分)已知函数,其中,且曲线在点处的切线平行于轴.(1)求实数的值;(2)求函数的单调区间.21(12分)将个不同的红球和个不同的白球,放入同一个袋中,现从中取出个球.(1)若取出的红球的个数不少于白球的个数,则有多少种不同的取法;(2)取出一个红球记分,取出一个白球记分,若取出个球的总分不少于分,则有多少种不同的取法;(3)若将取出的个球放入一箱子中,记“从箱子中任意取出个球,然后放回箱子中”为一次操作,如

6、果操作三次,求恰有一次取到个红球并且恰有一次取到个白球的概率.22(10分)ABC的内角A,B,C的对边分别为,且(1)求角A的大小;(2)求ABC的面积的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据条件构造函数,再利用导数研究单调性,进而判断大小.【详解】令,则,在上单调递增,当时,即,故A正确B错误.令,则,令,则,当时,;当时,在上单调递增,在上单调递减,易知C,D不正确,故选A【点睛】本题考查利用导数研究函数单调性,考查基本分析判断能力,属中档题.2、C【解析】先令,求出,再由时,根据,求出,结

7、合充分条件与必要条件的概念,即可得出结果.【详解】解:当时,当时,时,数列是等比数列;当数列是等比数列时,所以,是充分必要条件。故选C【点睛】本题主要考查充分必要条件的判定,熟记概念,以及数列的递推公式即可求解,属于常考题型.3、D【解析】先根据函数的最小正周期求出,再求出图像变换后的解析式,利用其对称中心为求出的值即得解.【详解】因为函数的最小正周期是,所以,解得.所以.将该函数的图象向右平移个单位长度后,所得图象对应的函数解析为.由题得.因为函数的解析式.故选 D.【点睛】本题主要考查三角函数的图像和性质,考查三角函数的图像变换,意在考查学生对这些知识的理解掌握水平,属于基础题.4、A【解

8、析】由为偶函数,知,由在(0,1)为增函数,知,由此能比较大小关系【详解】为偶函数,由时,知在(0,1)为增函数,故选:A【点睛】本题考查函数值大小的比较,解题时要认真审题,注意函数的单调性和导数的灵活运用5、B【解析】由题意,其中,且,所以.令,则,为增函数.令,得.所以.时,时,所以在上单调递减,在上单调递增.所以时,.故选B.点睛:本题的解题关键是将要求的量用一个变量来表示,进而利用函数导数得到函数的单调性求最值,本题中有以下几个难点:(1)多元问题一元化,本题中涉及的变量较多,设法将多个变量建立等量关系,进而得一元函数式;(2)含绝对值的最值问题,先研究绝对值内的式子的范围,最后再加绝

9、对值处理.6、D【解析】根据数列是等比数列得到公比,再由数列的通项公式得到结果.【详解】因为数列是等比数列,故得到进而得到,则 故答案为:D.【点睛】这个题目考查了等比数列的通项的求法,是简单题.7、B【解析】根据回归分析、独立性检验相关结论来对题中几个命题的真假进行判断。【详解】对于命题,对于回归直线,变量增加一个单位时,平均减少个单位,命题错误;对于命题,相关指数越大,拟合效果越好,则模型甲的拟合效果更好,命题正确;对于命题,对分类变量与,随机变量的观测值越大,根据临界值表,则犯错误的概率就越小,则判断“与有关系”的把握程度越高,命题正确;对于命题,两个随机变量的线性相关性越强,则相关系的

10、绝对值越接近于,命题错误.故选:B.【点睛】本题考查回归分析、独立性检验相关概念的理解,意在考查学生对这些基础知识的理解和掌握情况,属于基础题。8、D【解析】因为-2为极值点且为极大值点,故在-2的左侧附近0,-2的右侧-2且在-2的右侧附近时,排除BC,当x-2且在-2的左侧附近时,排除AC,故选D9、D【解析】根据分步计数原理分两步:先安排宿舍,再分配学生,继而得到结果【详解】根据题意可以分两步完成:第一步:选宿舍有10种;第二步:分配学生有6种;根据分步计数原理有:10660种故选D【点睛】本题考查排列组合及计数原理的实际应用,考查了分析问题解决问题的能力,属于基础题10、B【解析】试题

11、分析:由知,则,可得故本题答案应选B考点:1.向量的数量积;2.向量的模11、B【解析】根据,可得,即可求解,得到答案【详解】由题意,且,则,解得或,故选B【点睛】本题主要考查了共线向量的坐标表示及应用,其中解答中熟记共线向量的概念以及坐标表示是解答的关键,着重考查了推理与计算能力,属于基础题12、B【解析】由题意将复数的指数形式化为三角函数式,再由复数的运算化简即可得答案【详解】由 得 故选B【点睛】本题考查欧拉公式的应用,考查三角函数值的求法与复数的化简求值,是基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:由题意知各引擎是否有故障是独立的,4引擎飞机中至少有3个

12、引擎正常运行,4引擎飞机可以正常工作的概C43p3(1p)+p4,2引擎飞机可以正常工作的概率是p2,根据题意列出不等式,解出p的值详解:每一架飞机的引擎在飞行中出现故障率为1p,不出现故障的概率是p,且各引擎是否有故障是独立的,4引擎飞机中至少有3个引擎正常运行,飞机就可成功飞行;4引擎飞机可以正常工作的概率是C43p3(1p)+p4,2引擎飞机要2个引擎全部正常运行,飞机也可成功飞行,2引擎飞机可以正常工作的概率是p2要使4引擎飞机比2引擎飞机更安全,依题意得到C43p3(1p)+p4p2,化简得3p24p+10,解得p1故选:B点睛:本题考查相互独立事件同时发生的概率,考查互斥事件的概率

13、,考查一元二次不等式的解法,是一个综合题,本题也是一个易错题,注意条件“4引擎飞机中至少有3个引擎正常运行”的应用14、【解析】先计算出,结合图象得出该函数的周期,可得出,然后将点代入函数解析式,结合条件可求出的值,由此得出所求函数的解析式.【详解】由图象可得,且该函数的最小正周期为,所以,.将点代入函数解析式得,得.,即,所以,得.因此,所求函数解析式为,故答案为.【点睛】本题考查三角函数的解析式的求解,求解步骤如下:(1)求、:,;(2)求:根据题中信息求出最小正周期,利用公式求出的值;(3)求:将对称中心点和最高、最低点的坐标代入函数解析式,若选择对称中心点,还要注意函数在该点附近的单调

14、性.15、【解析】由切线的倾斜角范围为,得知切线斜率的取值范围是,然后对曲线对应的函数求导得,解不等式可得出点的横坐标的取值范围.【详解】由于曲线在点处的切线的倾斜角的取值范围是,则切线斜率的取值范围是,对函数求导得,令,即,解不等式,得或;解不等式,即,解得.所以,不等式组的解集为.因此,点的横坐标的取值范围是.【点睛】本题考查导数的几何意义,考查切线的斜率与点的横坐标之间的关系,考查计算能力,属于中等题16、【解析】由导数的运算公式,求得,令,即可求解,得到答案.【详解】由题意,函数,则,所以,解得.【点睛】本题主要考查了导数的运算,其中解答中熟记导数的运算公式,准确计算是解答的关键,着重

15、考查了运算与求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)不是;详见解析(2);(3)证明见解析.【解析】(1)利用特殊值,即可验证是不是“利普希兹条件函数”.(2)分离参数,将不等式变为关于,的不等式,结合定义域即可求得常数的最小值;(3)设出的最大值和最小值,根据一个周期内必有最大值与最小值,结合与1的大小关系,及“利普希兹条件函数”的性质即可证明式子成立.【详解】(1)函数不是“利普希兹条件函数”证明: 函数的定义域为 令则所以不满足所以函数不是“利普希兹条件函数”(2)若函数()是“利普希兹条件函数”则对定义域内任意,(),均有即设则,

16、即因为所以所以满足的的最小值为(3)证明:设的最大值为,最小值为 在一个周期内,函数值必能取到最大值与最小值设因为函数()是周期为2的“利普希兹条件函数”则若,则成立若,可设,则所以成立综上可知,对任意实数,都成立原式得证.【点睛】本题考查了函数新定义及抽象函数性质的应用,对题意正确理解并分析解决问题的方法是关键,属于难题.18、(1)(2)或1【解析】(1)求展开式的通项,根据常数项为60解得a的值,然后在原解析式中代入x=1求得各项系数之和,进而求出结果. (2)求出展开式的通项,因为展开式中有四项的系数为实数,所以r的取值为0,2,4,6,则可得出n的所有的可能的取值.【详解】解:(1)

17、展开式的通项为,常数项为,由,得令,得各项系数之和为所以除常数项外其余各项系数之和为(2)展开式的通项为,因为展开式中有四项的系数为实数,且,所以或1【点睛】本题考查二项式展开式的通项,考查求二项式特定项的系数,以及虚数单位的周期性,属于基础题.19、(3)22(cos+sin)3=2(2)2,2)【解析】(3)极坐标化为直角坐标可得C(3,3),则圆C的直角坐标方程为(x3)2+(y3)2=3化为极坐标方程是22(cos+sin)3=2 .(2)联立直线的参数方程与圆的直角坐标方程可得t2+2t(cos+sin)3=2结合题意和直线参数的几何意义讨论可得弦长|AB|的取值范围是2,2).【详

18、解】(3)C(,)的直角坐标为(3,3),圆C的直角坐标方程为(x3)2+(y3)2=3化为极坐标方程是22(cos+sin)3=2 .(2)将代入圆C的直角坐标方程(x3)2+(y3)2=3,得(3+tcos)2+(3+tsin)2=3,即t2+2t(cos+sin)3=2t3+t2=2(cos+sin),t3t2=3|AB|=|t3t2|=22,),22,),2|AB|2即弦长|AB|的取值范围是2,2).【点睛】本题主要考查直角坐标方程与极坐标方程的互化,直线参数方程的几何意义等知识,意在考查学生的转化能力和计算求解能力.20、(1)(2)单调增区间为: 函数单调减区间为【解析】(1)根

19、据题可知,由此计算出的值;(2)写出并因式分解,讨论取何范围能使,由此求出单调递增、递减区间.【详解】(1)由题意,曲线在点处的切线斜率为0.,所以;(2)由(1)知,当时,当时,当时,所以函数单调增区间为:;函数单调减区间为:.【点睛】本题考查导数的几何意义的运用以及求解具体函数的单调区间,难度较易.已知曲线某点处切线斜率求解参数时,可通过先求导,然后根据对应点处切线斜率等于导数值求解出参数.21、(1);(2);(3).【解析】(1)若取出的红球的个数不少于白球的个数,则有红、红白、红白三种情况,然后利用分类计数原理可得出答案;(2)若取出的球的总分不少于分,则有红、红白、红白和红白四种情况,然后利用分类计数原理可得出答案;(3)由题意得出箱子里红球和白球都是个,并求出操作三次的情况总数,以及恰有一次取到个红球且有一次取到个白球的情况数,然后利用古典概型的概率公式可得出答案.【详解】(1)若取出的红球个数不少于白球个数,则有红、红白、红白三种情况,其中红有种取法,红白有种取法,红白有种取法.因此,共有种不同的取法;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论