江西省赣州三中2021-2022学年数学高二下期末考试模拟试题含解析_第1页
江西省赣州三中2021-2022学年数学高二下期末考试模拟试题含解析_第2页
江西省赣州三中2021-2022学年数学高二下期末考试模拟试题含解析_第3页
江西省赣州三中2021-2022学年数学高二下期末考试模拟试题含解析_第4页
江西省赣州三中2021-2022学年数学高二下期末考试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知角的顶点在坐标原点,始边与轴正半轴重合,终边在直线上,则( )ABCD2定义在R上的函数f(x)满足f(-x)=-f(x),f(x)=f(x+4),且x(-1,0)时, f(x

2、)=2x+A1 B45 C-1 D3将红、黑、蓝、黄4个不同的小球放入3个不同的盒子,每个盒子至少放一个球,且红球和蓝球不能放在同一个盒子,则不同的放法的种数为( )A18 B24 C30 D364从一口袋中有放回地每次摸出1个球,摸出一个白球的概率为0.4,摸出一个黑球的概率为0.5,若摸球3次,则恰好有2次摸出白球的概率为A0.24B0.26C0.288D0.2925如图,在正三棱柱中,底面边长为2,侧棱长为3,点是侧面的两条对角线的交点,则直线与底面所成角的正切值为()ABCD16在等比数列an中,Sn是它的前n项和,若q2,且a2与2a4的等差中项为18,则S5()A62B62C32D

3、327在下面的四个图象中,其中一个图象是函数的导数的图象,则等于( )ABC或D8一个口袋内装有大小相同的6个白球和2个黑球,从中取3个球,则共有()种不同的取法AC61C22B9已知:,且,则ABCD10正项等比数列中,存在两项使得,且,则的最小值是( )AB2CD11已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为( )ABCD12已知定义在上的奇函数,满足,当时,若函数,在区间上有10个零点,则的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图在中,点是外一点,,则平面四边形面积的最大值是_14如图,在长方体中, ,则三棱锥的体积为_.

4、15关于圆周率,祖冲之的贡献有二:;用作为约率,作为密率,其中约率与密率提出了用有理数最佳逼近实数的问题.约率可通过用连分数近似表示的方法得到,如:,舍去0.0625135,得到逼近的一个有理数为,类似地,把化为连分数形式:(m,n,k为正整数,r为0到1之间的无理数),舍去r得到逼近的一个有理数为_.16已知函数, ,且,则不等式的解集为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)盒子中放有大小形状完全相同的个球,其中个红球,个白球.(1)某人从这盒子中有放回地随机抽取个球,求至少抽到个红球的概率;(2)某人从这盒子中不放回地从随机抽取个球,记每抽到个红球

5、得红包奖励元,每抽到个白球得到红包奖励元,求该人所得奖励的分布列和数学期望.18(12分)阿基米德是古希腊伟大的哲学家、数学家、物理学家,对几何学、力学等学科作出过卓越贡献.为调查中学生对这一伟大科学家的了解程度,某调查小组随机抽取了某市的100名高中生,请他们列举阿基米德的成就,把能列举阿基米德成就不少于3项的称为“比较了解”,少于三项的称为“不太了解”.他们的调查结果如下:0项1项2项3项4项5项5项以上理科生(人)110171414104 文科生(人)08106321(1)完成如下列联表,并判断是否有的把握认为,了解阿基米德与选择文理科有关?比较了解不太了解合计理科生文科生合计(2)在抽

6、取的100名高中生中,按照文理科采用分层抽样的方法抽取10人的样本.(i)求抽取的文科生和理科生的人数;(ii)从10人的样本中随机抽取3人,用表示这3人中文科生的人数,求的分布列和数学期望.参考数据:0.1000.0500.0100.0012.7063.8416.63510.828,.19(12分)已知函数f(x)3x,f(a2)81,g(x).(1)求g(x)的解析式并判断g(x)的奇偶性;(2)求函数g(x)的值域.20(12分)已知函数的图象关于原点对称.()求,的值;()若函数在内存在零点,求实数的取值范围.21(12分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点O为

7、极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为(1)求直线的普通方程及圆C的直角坐标方程;(2)设圆C与直线交于点,若点的坐标为,求的值22(10分)已知复数在复平面内对应的点位于第二象限,且满足.(1)求复数;(2)设复数满足:为纯虚数,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据直线斜率与倾斜角的关系求出tan的值,原式利用诱导公式化简,再利用同角三角函数间的基本关系变形,将tan的值代入计算即可求出值【详解】解:由已知可得,tan2,则原式1故选A【点睛】此题考查了诱导公式的作用,三角函

8、数的化简求值,以及直线斜率与倾斜角的关系,熟练掌握诱导公式是解本题的关键2、C【解析】试题分析:由于,因此函数为奇函数,故函数的周期为4,即,故答案为C考点:1、函数的奇偶性和周期性;2、对数的运算3、C【解析】解:由题意知4个小球有2个放在一个盒子里的种数是C4把这两个作为一个元素同另外两个元素在三个位置排列,有A3而红球和蓝球恰好放在同一个盒子里有A3编号为红球和蓝球不放到同一个盒子里的种数是C42 4、C【解析】首先分析可能的情况:(白,非白,白)、(白,白,非白)、(非白,白,白),然后计算相应概率.【详解】因为摸一次球,是白球的概率是,不是白球的概率是,所以,故选C.【点睛】本题考查

9、有放回问题的概率计算,难度一般.5、C【解析】通过作DH垂直BC,可知为直线与底面所成角,于是可求得答案.【详解】如图,过D作DH垂直BC于点H,连接DH,AH,于是DH垂直平面ABC,故为直线与底面所成角,而,,故,故选C.【点睛】本题主要考查线面角的相关计算,意在考查学生的转化能力,计算能力,难度一般.6、B【解析】先根据a2与2a4的等差中项为18求出,再利用等比数列的前n项和求S5.【详解】因为a2与2a4的等差中项为18,所以,所以.故答案为:B【点睛】(1)本题主要考查等比数列的通项和前n项和,考查等差中项,意在考查学生对这些知识的掌握水平和基本的计算能力.(2) 等比数列的前项和

10、公式:.7、D【解析】先求导,根据二次函数性质确定导函数图像,再求解.【详解】因为导函数,所以导函数的图像是开口向上的抛物线,所以导函数图像是从左至右第三个,所以 ,又,即,所以,所以. 故选D.【点睛】本题主要考查函数求导及二次函数的性质.8、D【解析】直接由组合数定义得解【详解】由题可得:一个口袋内装有大小相同的8个球中,从中取3个球,共有N=C故选D【点睛】本题主要考查了组合数的定义,属于基础题9、C【解析】分析:由题目条件,得随机变量x的均值和方差的值,利用 即可得出结论详解:由题意, 故选:C点睛:本题主要考查正态分布的参数问题,属于基础题,正态分布涉及到连续型随机变量的分布密度,是

11、概率统计中最重要的一种分布,也是自然界最常见的一种分布10、A【解析】试题分析:由得解得,再由得,所以,所以.考点:数列与基本不等式.【思路点晴】本题主要考查等比数列的基本元思想,考查基本不等式.第一步是解决等比数列的首项和公比,也即求出等比数列的基本元,在求解过程中,先对具体的数值条件进行化简,可求出,由此化简第一个条件,可得到;接下来第二步是基本不等式常用的处理技巧,先乘以一个常数,再除以这个常数,构造基本不等式结构来求.11、A【解析】根据椭圆与双曲线离心率的表示形式,结合和的离心率之积为,即可得的关系,进而得双曲线的离心率方程.【详解】椭圆的方程,双曲线的方程为,则椭圆离心率,双曲线的

12、离心率,由和的离心率之积为,即,解得,所以渐近线方程为,化简可得,故选:A.【点睛】本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线渐近线方程求法,属于基础题.12、A【解析】由得出函数的图象关于点成中心对称以及函数的周期为,由函数为奇函数得出,并由周期性得出,然后作出函数与函数的图象,列举前个交点的横坐标,结合第个交点的横坐标得出实数的取值范围【详解】由可知函数的图象关于点成中心对称,且,所以,所以,函数的周期为,由于函数为奇函数,则,则,作出函数与函数的图象如下图所示:,则,于是得出,由图象可知,函数与函数在区间上从左到右个交点的横坐标分别为、,第个交点的横坐标为

13、,因此,实数的取值范围是,故选A【点睛】本题考查方程的根与函数的零点个数问题,一般这类问题转化为两个函数图象的交点个数问题,在画函数的图象时,要注意函数的奇偶性、对称性、周期性对函数图象的影响,属于难题二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】分析:利用余弦定理,设,设AC=BC=m,则由余弦定理把m表示出来,利用四边形OACB面积为S=转化为三角形函数问题求解最值详解:ABC为等腰直角三角形OA=2OB=4,不妨设AC=BC=m,则由余弦定理,42+222m2=16,.当时取到最大值.故答案为.点睛:(1)本题主要考查余弦定理和三角形的面积的求法,考查三角恒等变换和三角

14、函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是设,再建立三角函数的模型.14、3【解析】分析:等体积转化详解:根据题目条件,在长方体中,=3所以三棱锥的体积为3点睛:在求解三棱锥体积问题时,如果所求椎体高不好确定时,往往要通过等体积转化,找到合适的高所对应的椎体进行计算,体现了数学中的转化与化归思想,要深刻体会.15、.【解析】利用题中的定义以及类比推理直接进行求解即可.【详解】舍去得到逼近的一个有理数为.故答案为:【点睛】本题考查了类比推理,解题的关键是理解题中的定义,属于基础题.16、【解析】分析:根据条件,构造函数,求函数的导数,利用导数即可求出

15、不等式的解集.详解:由则,构造函数,则,当时,即函数在上单调递减,则不等式等价于,即,则,故不等式的解集为.故答案为:.点睛:本题主要考查不等式的求解,根据条件构造函数,利用函数的单调性和导数之间的关系是解决本题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)42元.【解析】(1)分为三种情况,即抽到个红球,抽到个红球和抽到个红球,概率相加得到答案.(2)随机变量可能的取值为,计算每个数对应概率,得到分布列,计算数学期望得到答案.【详解】(1)记至少抽到个红球的事件为, 法1:至少抽到个红球的事件,分为三种情况,即抽到个红球,抽到个红球和抽到个红球,每

16、次是否取得红球是相互独立的,且每次取到红球的概率均为, 所以, 答:至少抽到个红球的概率为. 法2:至少抽到个红球的事件的对立事件为次均没有取到红球(或次均取到白球),每次取到红球的概率均为(每次取到白球的概率均为),所以 答:至少抽到个红球的概率为. (2) 由题意,随机变量可能的取值为,所以随机变量的分布表为:所以随机变量的数学期望为(元).【点睛】本题考查了概率的计算,分布列,数学期望,意在考查学生的计算能力.18、 (1)见解析;(2) (i)文科生3人,理科生7人 (ii)见解析【解析】(1)写出列联表后可计算,根据预测值表可得没有的把握认为,了解阿基米德与选择文理科有关.(2)(i

17、)文科生与理科生的比为,据此可计算出文科生和理科生的人数.(ii)利用超几何分布可计算的分布列及其数学期望.【详解】解:(1)依题意填写列联表如下:比较了解不太了解合计理科生422870文科生121830合计5446100计算,没有的把握认为,了解阿基米德与选择文理科有关.(2)(i)抽取的文科生人数是(人),理科生人数是(人).(ii)的可能取值为0,1,2,3,则,.其分布列为 0123 所以.【点睛】本题考查独立性检验、分层抽样及超几何分布,注意在计算离散型随机变量的概率时,注意利用常见的概率分布列来简化计算(如二项分布、超几何分布等)19、(1),为奇函数; (2).【解析】试题分析:

18、(1)先求出,即可得的解析式,然后利用奇偶性的定义判断的奇偶性;(2)根据分式的特点,结合指数函数的性质求解值域.试题解析:(1)由,得,故,所以.因为,而, 所以函数为奇函数.(2),所以,即函数的值域为().20、(1),;(2)【解析】试题分析:()题意说明函数是奇函数,因此有恒成立,由恒等式知识可得关于的方程组,从而可解得;()把函数化简得,这样问题转化为方程在内有解,也即在内有解,只要作为函数,求出函数的值域即得试题解析:()函数的图象关于原点对称,所以,所以,所以,即,所以,解得,;()由,由题设知在内有解,即方程在内有解.在内递增,得.所以当时,函数在内存在零点.21、(1):,C:;(2)【解析】(1)消去参数可得直线的普通方程,再把化成,利用可得圆的直角方程.(2)将的参数方程代入圆的直角坐标方程后利用韦达定理可求的值.【详解】(1)由直线的参数方程消参得直线普通方程为,由得, 故,即圆的直角坐标方程为.(2)将的参数方程代入圆C的直角坐标方程,得,即,由于,故可设是上述方程的两实根,所以, 又直线过点,故由上式及的几何意义得: 【点睛】极坐标转化为直角坐标,关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论