




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、(优选)中值定理证明方法总结第一页,共四十四页。一、罗尔( Rolle )定理机动 目录 上页 下页 返回 结束 二、拉格朗日中值定理 三、柯西(Cauchy)中值定理 中值定理 第二页,共四十四页。一、罗尔( Rolle )定理满足:(1) 在区间 a , b 上连续(2) 在区间 (a , b) 内可导(3) f ( a ) = f ( b )使证:故在 a , b 上取得最大值 M 和最小值 m .若 M = m , 则因此在( a , b ) 内至少存在一点机动 目录 上页 下页 返回 结束 第三页,共四十四页。若 M m , 则 M 和 m 中至少有一个与端点值不等,不妨设 则至少存
2、在一点使注意:1) 定理条件条件不全具备, 结论不一定成立. 例如,则由费马引理得 机动 目录 上页 下页 返回 结束 第四页,共四十四页。使2) 定理条件只是充分的.本定理可推广为在 ( a , b ) 内可导, 且在( a , b ) 内至少存在一点证明提示: 设证 F(x) 在 a , b 上满足罗尔定理 . 机动 目录 上页 下页 返回 结束 第五页,共四十四页。二、拉格朗日中值定理(1) 在区间 a , b 上连续满足:(2) 在区间 ( a , b ) 内可导至少存在一点使思路: 利用逆向思维找出一个满足罗尔定理条件的函数作辅助函数显然 ,在 a , b 上连续 ,在 ( a ,
3、b ) 内可导,且证:问题转化为证由罗尔定理知至少存在一点即定理结论成立 .拉氏 目录 上页 下页 返回 结束 证毕第六页,共四十四页。三、柯西(Cauchy)中值定理分析:及(1) 在闭区间 a , b 上连续(2) 在开区间 ( a , b ) 内可导(3)在开区间 ( a , b ) 内至少存在一点使满足 :要证柯西 目录 上页 下页 返回 结束 第七页,共四十四页。证: 作辅助函数且使即由罗尔定理知, 至少存在一点思考: 柯西定理的下述证法对吗 ?两个 不一定相同错!机动 目录 上页 下页 返回 结束 上面两式相比即得结论. 第八页,共四十四页。罗尔定理拉格朗日中值定理柯西中值定理泰勒
4、中值定理几个中值定理的关系第九页,共四十四页。证明中值定理的方法辅助函数法直观分析逆向分析例如, 证明拉格朗日定理 :要构造满足罗尔定理条件的辅助函数 .方法1. 直观分析由图可知 , 设辅助函数(C 为任意常数 )第十页,共四十四页。方法2. 逆向分析要证即证原函数法辅助函数第十一页,共四十四页。同样, 柯西中值定理要证即证原函数法设第十二页,共四十四页。* 中值定理的条件是充分的, 但非必要.可适当减弱. 因此例如, 设在内可导,且则至少存在一点使证: 设辅助函数显然在上连续,在内可导,由罗尔定理可知 , 存在一点使即第十三页,共四十四页。* 中值定理的统一表达式设都在上连续 , 且在内可
5、导, 证明至少存在一点使证: 按三阶行列式展开法有第十四页,共四十四页。利用逆向思维设辅助函数显然 F(x) 在a , b 上连续 , 在 (a , b)内可导, 且因此,由罗尔定理知至少存在一点使即第十五页,共四十四页。说明设都在上连续 , 且在内可导, 证明至少存在一点使若取即为罗尔定理;若取即为拉格朗日中值定理;若取即为柯西中值定理;( 自己验证 )第十六页,共四十四页。中值定理的主要应用与解题方法 中值定理原函数的性质导函数的性质 反映反映中值定理的主要应用(1) 利用中值定理求极限(2) 研究函数或导数的性质(3) 证明恒等式(4) 判定方程根的存在性和唯一性(5) 证明有关中值问题
6、的结论(6) 证明不等式第十七页,共四十四页。解题方法:从结论入手, 利用逆向分析法, 选择有关中值定理及适当设辅助函数 .(1) 证明含一个中值的等式或证根的存在 , 常用罗尔定理 ,此时可用原函数法设辅助函数.(2) 若结论中涉及到含一个中值的两个不同函数,可考虑用柯西中值定理 .注:(1) 几个中值定理中最重要、最常用的是: 罗尔中值定理。 (2) 应用中值定理的关键为: 如何构造合适的辅助函数?(难点、 重点)第十八页,共四十四页。(3) 若结论中含两个或两个以上中值 ,必须多次使用中值定理 .(4) 若已知条件或结论中含高阶导数 ,多考虑用泰勒公式 ,有时也可考虑对导数用中值定理 .
7、(5) 若结论为恒等式 ,先证变式导数为 0 , 再利用特殊点定常数 .(6) 若结论为不等式 ,要注意适当放大或缩小的技巧.第十九页,共四十四页。构造辅助函数的方法 (1)不定积分求积分常数法.第二十页,共四十四页。第二十一页,共四十四页。第二十二页,共四十四页。第二十三页,共四十四页。第二十四页,共四十四页。第二十五页,共四十四页。例1. 证明方程有且仅有一个小于1 的正实根 .证: 1) 存在性 .则在 0 , 1 连续 ,且由介值定理知存在使即方程有小于 1 的正根2) 唯一性 .假设另有为端点的区间满足罗尔定理条件 ,至少存在一点但矛盾,故假设不真!设机动 目录 上页 下页 返回 结
8、束 5.2 .例题选讲第二十六页,共四十四页。例2.求证存在使设 可导,且在连续,证:因此至少存在显然在 上满足罗尔定理条件,即设辅助函数使得机动 目录 上页 下页 返回 结束 辅助函数如何想出来的?第二十七页,共四十四页。例3. 设函数在内可导, 且证明在证: 取点再取异于的点对在以为端点的区间上用拉氏中值定理得( 界于 与 之间)令则对任意即在内有界.内有界.第二十八页,共四十四页。例4. 设函数在上连续, 在但当时内可导,且求证对任意自然数 n , 必有使分析: 在结论中换 为得积分因所以证: 设辅助函数显然在上满足罗尔定理条件,因此必有使即 不定积分求积分常数法!第二十九页,共四十四页
9、。例5. 设函数在上二阶可导, 且证明至少存在一点使分析: 在结论中将换为得积分证: 设辅助函数因在上满足罗尔定理条件,所以存在使因此在上满足罗尔定理条件,故必存在使即有 不定积分求积分常数法!第三十页,共四十四页。例6. 设在上连续, 在证明存在内可导,且使证: 方法1 .因为所证结论左边为设辅助函数由于上满足拉氏中值定理条件,且易推出所证结论成立 .在第三十一页,共四十四页。方法2 . 令因此可考虑设辅助函数由于在上满足罗尔定理条件,故存在使由此可推得故所证结论成立.常数变易法第三十二页,共四十四页。*例7. 设在上连续, 在证明存在内可导,且使证:转化为证设辅助函数由于它在满足拉氏中值定
10、理条件,即证因此存在使第三十三页,共四十四页。再对转化为证在上用拉氏中值定理 ,则存在使因此第三十四页,共四十四页。*例8. 设在上连续, 在试证对任意给定的正数内可导,且存在证:转化为证因即由连续函数定理可知, 存在使使因此第三十五页,共四十四页。对分别在上用拉氏中值定理 , 得即第三十六页,共四十四页。例10. 设至少存在一点使证: 结论可变形为设则在 0, 1 上满足柯西中值定理条件, 因此在 ( 0 , 1 ) 内至少存在一点 ,使即证明机动 目录 上页 下页 返回 结束 第三十七页,共四十四页。例11. 试证至少存在一点使证: 法1 用柯西中值定理 .则 f (x) , F(x) 在
11、 1 , e 上满足柯西中值定理条件, 令因此 即分析:机动 目录 上页 下页 返回 结束 第三十八页,共四十四页。例11. 试证至少存在一点使法2 令则 f (x) 在 1 , e 上满足罗尔中值定理条件,使因此存在机动 目录 上页 下页 返回 结束 第三十九页,共四十四页。例12. 当 时, 试证证: 设当 时,在上满足拉氏中值定理条件, 因此有解出, 则时第四十页,共四十四页。又因及在单调递增 , 于是 说明: 中值定理只告诉位于区间内的中值存在 , 一般不能确定其值 , 此例也只给出一个最好的上下界 .第四十一页,共四十四页。构造的辅助函数方法举例. 迫切问题: 上面例子中构造的辅助函数如何想出来的? 作业:将上面例子中所构造的辅助函数自己全部练习构造一遍!第四十二页,共
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗设备补充合同范本
- 农田监理合同范本
- 公司搬迁劳务合同范本
- 《赠汪伦》教案四篇
- 兼职公司合同范本
- 买卖玉米简易合同范本
- 个人委托他人借款合同范本
- 保健机构劳动合同范本
- 上班包车服务合同范本
- 代理协议合同范本
- 海关监管场所投资建设项目可行性研究报告-广州中撰咨询
- 六氟化硫(SF6)气体的管理及充注质量检查表
- 一年级劳动课教案设计
- 网页设计基础ppt课件(完整版)
- Windows Azure云平台基本操作手册
- 中南大学-钢结构门式钢架厂房毕业设计
- 百家姓精品资源课件
- 医院感染控制原则
- T∕ASC 17-2021 电动汽车充换电设施系统设计标准
- 水闸设计步骤计算书(多表)
- 智慧安监重大危险源监管平台解决方案
评论
0/150
提交评论