湖南省张家界市慈利县重点中学2023学年中考数学模拟预测试卷含答案解析_第1页
湖南省张家界市慈利县重点中学2023学年中考数学模拟预测试卷含答案解析_第2页
湖南省张家界市慈利县重点中学2023学年中考数学模拟预测试卷含答案解析_第3页
湖南省张家界市慈利县重点中学2023学年中考数学模拟预测试卷含答案解析_第4页
湖南省张家界市慈利县重点中学2023学年中考数学模拟预测试卷含答案解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、湖南省张家界市慈利县重点中学2023年中考数学模拟预测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列运算正确的是()Ax2x3x6Bx2+x22x4C(2x)24x2D( a+b)2a2+b22在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下

2、列说法正确的是( )A最高分90B众数是5C中位数是90D平均分为87.53下列说法: -102数轴上的点与实数成一一对应关系;2是16的平方根;任何实数不是有理数就是无理数;两个无理数的和还是无理数;无理数都是无限小数,其中正确的个数有( )A2个B3个C4个D5个4已知一元二次方程 的两个实数根分别是 x1 、 x2 则 x12 x2 x1 x22 的值为( )A-6B- 3C3D65如图,正比例函数的图像与反比例函数的图象相交于A、B两点,其中点A的横坐标为2,当时,x的取值范围是( )Ax-2或x2Bx-2或0 x2C-2x0或0 x2D-2x0或x26如图,点A,B为定点,定直线l/

3、AB,P是l上一动点点M,N分别为PA,PB的中点,对于下列各值:线段MN的长;PAB的周长;PMN的面积;直线MN,AB之间的距离;APB的大小其中会随点P的移动而变化的是( )ABCD7实数 的相反数是 ( )A-BCD8某反比例函数的图象经过点(-2,3),则此函数图象也经过( )A(2,-3)B(-3,3)C(2,3)D(-4,6)9九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是( )ABCD10某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是()A袋中装有大

4、小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C先后两次掷一枚质地均匀的硬币,两次都出现反面D先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过911下列运算正确的是( )A=x5BC=D3+2 12等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x212x+k=0的两个根,则k的值是()A27B36C27或36D18二、填空题:(本大题共6个小题,每小题4分,共24分)13化简的结果等于_14已知一组数据1,2,0,1,x,1的平均数是1,则这组数据的中位数为_15已知O1、O2的半径分

5、别为2和5,圆心距为d,若O1与O2相交,那么d的取值范围是_16若关于x的方程有增根,则m的值是 17已知 x(x+1)x+1,则x_18如图是一个几何体的三视图(图中尺寸单位:),根据图中数据计算,这个几何体的表面积为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在中,的垂直平分线交于,交于,射线上,并且()求证:;()当的大小满足什么条件时,四边形是菱形?请回答并证明你的结论20(6分)如图,在ABC中,AB=AC,ABC=72(1)用直尺和圆规作ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出ABC

6、的平分线BD后,求BDC的度数21(6分)综合与探究:如图,已知在ABC 中,AB=AC,BAC=90,点 A 在 x 轴上,点 B 在 y 轴上,点在二次函数的图像上(1)求二次函数的表达式;(2)求点 A,B 的坐标;(3)把ABC 沿 x 轴正方向平移, 当点 B 落在抛物线上时, 求ABC 扫过区域的面积22(8分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图 类别 频数(人数) 频率 小说 0.5 戏剧 4 散文 10 0.25 其

7、他 6 合计 1根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率23(8分)计算:(2)0+4cos30|24(10分)我校春晚遴选男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去参加主持人精选。(1)选中的男主持人为甲班的频率是 (2)选中的男女主持人均为甲班的概率是多少?(用树状图或列表)25(10分)2015年1月,市教育局在全市中小学中选取了6

8、3所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图 根据上述信息,解答下列问题: (1)本次抽取的学生人数是 _ ;扇形统计图中的圆心角等于 _ ;补全统计直方图; (2)被抽取的学生还要进行一次50米跑测试,每5人一组进行在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率26(12分)如图1,正方形ABCD的边长为4,把三角板的直角顶点放置BC中点E处,三角板绕点E旋转,

9、三角板的两边分别交边AB、CD于点G、F(1)求证:GBEGEF(2)设AG=x,GF=y,求Y关于X的函数表达式,并写出自变量取值范围(3)如图2,连接AC交GF于点Q,交EF于点P当AGQ与CEP相似,求线段AG的长 27(12分)某村大力发展经济作物,其中果树种植已初具规模,该村果农小张种植了黄桃树和苹果树,为进一步优化种植结构,小张将前年和去年两种水果的销售情况进行了对比:前年黄桃的市场销售量为1000千克,销售均价为6元/千克,去年黄桃的市场销售量比前年减少了m%(m0),销售均价与前年相同;前年苹果的市场销售量为2000千克,销售均价为4元/千克,去年苹果的市场销售量比前年增加了2

10、m%,但销售均价比前年减少了m%如果去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,求m的值2023学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【答案解析】根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可【题目详解】A、x2x3x5,故A选项错误;B、x2+x22x2,故B选项错误;C、(2x)24x2,故C选项正确;D、( a+b)2a2+2ab+b2,故D选项错误,故选C【答案点睛】本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平

11、方公式,熟练掌握各运算的运算法则是解题的关键2、C【答案解析】测试卷分析:根据折线统计图可得:最高分为95,众数为90;中位数90;平均分=(802+85+905+952)(2+1+5+2)=88.5.3、C【答案解析】根据平方根,数轴,有理数的分类逐一分析即可.【题目详解】-102=10,数轴上的点与实数成一一对应关系,故说法正确;164,故-2是16 的平方根,故说法正确;任何实数不是有理数就是无理数,故说法正确;两个无理数的和还是无理数,如2 和-2无理数都是无限小数,故说法正确;故正确的是共4个;故选C.【答案点睛】本题考查了有理数的分类,数轴及平方根的概念,有理数都可以化为小数,其中

12、整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无限不循环小数,其中有开方开不尽的数,如2,4、B【答案解析】根据根与系数的关系得到x1+x2=1,x1x2=1,再把x12x2+x1x22变形为x1x2(x1+x2),然后利用整体代入的方法计算即可【题目详解】根据题意得:x1+x2=1,x1x2=1,所以原式=x1x2(x1+x2)=11=1故选B【答案点睛】本题考查了一元二次方程ax2+bx+c=0(a0)的根与系数的关系:若方程两个为x1,x2,则x1+x2,x1x25、D【答案解析】先根据反比例函数与正比例函数的性质求出B点坐标,再由函数图象即可得出结论【题

13、目详解】解:反比例函数与正比例函数的图象均关于原点对称,A、B两点关于原点对称,点A的横坐标为1,点B的横坐标为-1,由函数图象可知,当-1x0或x1时函数y1=k1x的图象在的上方,当y1y1时,x的取值范围是-1x0或x1故选:D【答案点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1y1时x的取值范围是解答此题的关键6、B【答案解析】测试卷分析:、MN=AB,所以MN的长度不变;、周长CPAB=(AB+PA+PB),变化;、面积SPMN=SPAB=ABh,其中h为直线l与AB之间的距离,不变;、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变;、画

14、出几个具体位置,观察图形,可知APB的大小在变化故选B考点:动点问题,平行线间的距离处处相等,三角形的中位线7、A【答案解析】根据相反数的定义即可判断.【题目详解】实数 的相反数是-故选A.【答案点睛】此题主要考查相反数的定义,解题的关键是熟知相反数的定义即可求解.8、A【答案解析】设反比例函数y=(k为常数,k0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断【题目详解】设反比例函数y=(k为常数,k0),反比例函数的图象经过点(-2,3),k=-23=-6,而2(-3)=-6,(-3)(-3)=9,23=6,-46=-24,点(2,-

15、3)在反比例函数y=- 的图象上故选A【答案点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k9、C【答案解析】测试卷分析:由题意可得,第一小组对应的圆心角度数是:360=72,故选C考点:1.扇形统计图;2.条形统计图10、D【答案解析】根据统计图可知,试验结果在0.33附近波动,即其概率P0.33,计算四个选项的概率,约为0.33者即为正确答案【题目详解】解: 根据统计图可知,试验结果在0.33附近波动,即其概率P0.33,A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到

16、红球的概率为,不符合题意;B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,不符合题意;C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为,不符合题意;D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为,符合题意,故选D【答案点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:概率=所求情况数与总情况数之比11、B【答案解析】根据幂的运算法则及整式的加减运算即可判断.【题目详解】A. =x6,故错误;B. ,正确;C. =,故错误; D. 3+2 不能合并,故错误,故选B.【答案点睛】此题主要考查整式的加减及幂的

17、运算,解题的关键是熟知其运算法则.12、B【答案解析】测试卷分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(3)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(3)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由=0可求出k的值,再求出方程的两个根进行判断即可测试卷解析:分两种情况:(3)当其他两条边中有一个为3时,将x=3代入原方程,得:33-333+k=0解得:k=37将k=37代入原方程,得:x3-33x+37=0解得x=3或93,3,9不能组成三角形,不符合

18、题意舍去;(3)当3为底时,则其他两边相等,即=0,此时:344-4k=0解得:k=3将k=3代入原方程,得:x3-33x+3=0解得:x=63,6,6能够组成三角形,符合题意故k的值为3故选B考点:3等腰三角形的性质;3一元二次方程的解二、填空题:(本大题共6个小题,每小题4分,共24分)13、【答案解析】先通分变为同分母分式,然后根据分式的减法法则计算即可【题目详解】解:原式故答案为:【答案点睛】此题考查的是分式的减法,掌握分式的减法法则是解决此题的关键14、2【答案解析】解:这组数据的平均数为2,有 (2+2+0-2+x+2)=2,可求得x=2将这组数据从小到大重新排列后,观察数据可知最

19、中间的两个数是2与2,其平均数即中位数是(2+2)2=2故答案是:215、3d7【答案解析】若两圆的半径分别为R和r,且Rr,圆心距为d:相交,则R-rdR+r,从而得到圆心距O1O2的取值范围【题目详解】O1和O2的半径分别为2和5,且两圆的位置关系为相交,圆心距O1O2的取值范围为5-2d2+5,即3d7.故答案为:3d7.【答案点睛】本题考查的知识点是圆与圆的位置关系,解题的关键是熟练的掌握圆与圆的位置关系.16、1【答案解析】方程两边都乘以最简公分母(x2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于1的未知数的值求出x的值,然后代入进行计算即可求出m的值:方程两

20、边都乘以(x2)得,2xm=2(x2)分式方程有增根,x2=1,解得x=222m=2(22),解得m=117、1或-1【答案解析】方程可化为:,或,或.故答案为1或-1.18、【答案解析】分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积详解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为2cm,故表面积=rl+r2=26+22=16(cm2)故答案为:16点睛:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查三、解答

21、题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)见解析;(2)见解析【答案解析】(1)求出EFAC,根据EFAC,利用平行四边形的判定推出四边形ACEF是平行四边形即可;(2)求出CEAB,ACAB,推出 AC CE,根据菱形的判定推出即可.【题目详解】(1)证明:ACB90,DE是BC的垂直平分线,BDEACB90,EFAC,EFAC,四边形ACEF是平行四边形,AFCE;(2)当B30时,四边形ACEF是菱形,证明:B30,ACB90,ACAB,DE是BC的垂直平分线,BDDC,DEAC,BEAE,ACB90,CEAB,CEAC,四边形ACEF是平行四边

22、形,四边形ACEF是菱形,即当B30时,四边形ACEF是菱形.【答案点睛】本题考查了菱形的判定平行四边形的判定线段垂直平分线,含30度角的直角三角形性质,直角三角形斜边上中线性质等知识点的应用综合性比较强,有一定的难度.20、(1)作图见解析(2)BDC=72【答案解析】解:(1)作图如下:(2)在ABC中,AB=AC,ABC=72,A=1802ABC=180144=36AD是ABC的平分线,ABD=ABC=72=36BDC是ABD的外角,BDC=A+ABD=36+36=72(1)根据角平分线的作法利用直尺和圆规作出ABC的平分线:以点B为圆心,任意长为半径画弧,分别交AB、BC于点E、F;分

23、别以点E、F为圆心,大于EF为半径画圆,两圆相较于点G,连接BG交AC于点D(2)先根据等腰三角形的性质及三角形内角和定理求出A的度数,再由角平分线的性质得出ABD的度数,再根据三角形外角的性质得出BDC的度数即可21、(1);(2);(3)【答案解析】(1)将点代入二次函数解析式即可;(2)过点作轴,证明即可得到即可得出点 A,B 的坐标;(3)设点的坐标为,解方程得出四边形为平行四边形,求出AC,AB的值,通过扫过区域的面积=代入计算即可【题目详解】解:(1)点在二次函数的图象上,解方程,得二次函数的表达式为 (2)如图1,过点作轴,垂足为,在和中,点的坐标为 ,(3)如图2,把沿轴正方向

24、平移, 当点落在抛物线上点处时,设点的坐标为解方程得:(舍去)或由平移的性质知,且,四边形为平行四边形,扫过区域的面积= 【答案点睛】本题考查了二次函数与几何综合问题,涉及全等三角形的判定与性质,平行四边形的性质与判定,勾股定理解直角三角形,解题的关键是灵活运用二次函数的性质与几何的性质22、(1)41(2)15%(3)【答案解析】(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率【题目详解】(1)喜欢散文的有11人,频率为125,m=11125=41;(2)在扇形统计图

25、中,“其他”类所占的百分比为 111%=15%,故答案为15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,P(丙和乙)=23、1【答案解析】分析:按照实数的运算顺序进行运算即可.详解:原式 =1 点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.24、 (1) (2) ,图形见解析.【答案解析】(1)根据概率的定义即可求出;(2)先根据题意列出树状图,再利用概率公式进行求解.【题目详解】(1)由题意P(选中的男主持人为甲班)=(2)列出树状图如下P(选中的男女主持人均为甲班的)=【答案

26、点睛】此题主要考查概率的计算,解题的关键是根据题意列出树状图进行求解.25、(1)30;(2)【答案解析】测试卷分析:(1)根据题意列式求值,根据相应数据画图即可;(2)根据题意列表,然后根据表中数据求出概率即可解:(1)620%=30,(303762)30360=123026=144,答:本次抽取的学生人数是30人;扇形统计图中的圆心角等于144;故答案为30,144;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,记小红和小花抽在相邻两道这个事件为A,考点:列表法与树状图法;扇形统计图;利用频率估计概率26、(1)见解析;(2)y=4x+(0 x3);(3)当AGQ与CEP相似,线段AG的长为2或4【答案解析】(1)先判断出BEFCEF,得出BF=CF,EF=EF,进而得出BGE=EGF,即可得出结论;(2)先判断出BEGCFE进而得出CF=,即可得出结论;(3)分两种情况

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论