湖南省株洲市荷塘区达标名校2023学年中考数学五模试卷含答案解析_第1页
湖南省株洲市荷塘区达标名校2023学年中考数学五模试卷含答案解析_第2页
湖南省株洲市荷塘区达标名校2023学年中考数学五模试卷含答案解析_第3页
湖南省株洲市荷塘区达标名校2023学年中考数学五模试卷含答案解析_第4页
湖南省株洲市荷塘区达标名校2023学年中考数学五模试卷含答案解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、湖南省株洲市荷塘区达标名校2023学年中考数学五模试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1若关于x的方程 是一元二次方程,则m的取值范围是( )A.B.CD.2如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(c

2、m)185180185180方差3.63.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择()A甲B乙C丙D丁3如图,C,B是线段AD上的两点,若,则AC与CD的关系为( ) ABCD不能确定4把不等式组的解集表示在数轴上,正确的是()ABCD5二次函数y=ax2+bx+c(a0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:4a+b=0;9a+c3b;8a+7b+2c0;当x-1时,y的值随x值的增大而增大.其中正确的结论有( )A1个B2个C3个D4个6BAC放在正方形网格纸的位置如图,则tanBAC的值为()ABCD7如图,已知ABCD中,

3、E是边AD的中点,BE交对角线AC于点F,那么SAFE:S四边形FCDE为( )A1:3B1:4C1:5D1:68如图在ABC中,ACBC,过点C作CDAB,垂足为点D,过D作DEBC交AC于点E,若BD6,AE5,则sinEDC的值为()ABCD9若矩形的长和宽是方程x27x+12=0的两根,则矩形的对角线长度为( )A5B7C8D1010如图,点A,B在双曲线y=(x0)上,点C在双曲线y=(x0)上,若ACy轴,BCx轴,且AC=BC,则AB等于()AB2C4D311如图,在热气球C处测得地面A、B两点的俯角分别为30、45,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB

4、两点的距离是()A200米B200米C220米D100米12已知抛物线y=ax2+bx+c与x轴交于(x1,0)、(x2,0)两点,且0 x11,1x21;a+b0;a”或“=,从甲和丙中选择一人参加比赛,=【答案解析】观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;波动越小越稳定.【题目详解】解:观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;则乙地的日平均气温的方差小,故S2甲S2乙故答案为:【答案点睛】本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定反之,方差越小,表明这组数据分布比较集中,各数据偏离平均

5、数越小,即波动越小,数据越稳定18、2【答案解析】设MN=y,PC=x,根据正方形的性质和勾股定理列出y1关于x的二次函数关系式,求二次函数的最值即可【题目详解】作MGDC于G,如图所示:设MN=y,PC=x,根据题意得:GN=2,MG=|10-1x|,在RtMNG中,由勾股定理得:MN1=MG1+GN1,即y1=21+(10-1x)10 x10,当10-1x=0,即x=2时,y1最小值=12,y最小值=2即MN的最小值为2;故答案为:2【答案点睛】本题考查了正方形的性质、勾股定理、二次函数的最值熟练掌握勾股定理和二次函数的最值是解决问题的关键三、解答题:(本大题共9个小题,共78分,解答应写

6、出文字说明、证明过程或演算步骤19、(1)见解析 (2)8(3) 【答案解析】分析:(1)连接BD、OD,由AB=BC及ADB=90知AD=CD,根据AO=OB知OD是ABC的中位线,据此知ODBC,结合DEBC即可得证;(2)设O的半径为x,则OB=OD=x,在RtODE中由sinE=求得x的值,再根据S阴影=SODE-S扇形ODB计算可得答案(3)先证RtDFBRtDCB得,据此求得BF的长,再证EFBEDO得,据此求得EB的长,继而由勾股定理可得答案详解:(1)如图,连接BD、OD,AB是O的直径,BDA=90,BA=BC,AD=CD,又AO=OB,ODBC,DEBC,ODDE,DE是O

7、的切线;(2)设O的半径为x,则OB=OD=x,在RtODE中,OE=4+x,E=30,解得:x=4,DE=4,SODE=44=8,S扇形ODB=,则S阴影=SODE-S扇形ODB=8-;(3)在RtABD中,BD=ABsinA=10=2,DEBC,RtDFBRtDCB,即,BF=2,ODBC,EFBEDO,即,EB=,EF=点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、中位线定理、三角函数的应用及相似三角形的判定与性质等知识点20、(1)yx2+x+1;(2)-;点P的坐标(6,14)(4,5);(3).【答案解析】(1)根据待定系数法,可得函数解析式;(2)根据垂线间的关系

8、,可得PA,PB的解析式,根据解方程组,可得P点坐标;(3)根据垂直于x的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值【题目详解】解:(1)将A,B点坐标代入,得,解得,抛物线的解析式为y;(2)由直线y2x1与直线ymx+2互相垂直,得2m1,即m;故答案为;AB的解析式为当PAAB时,PA的解析式为y2x2,联立PA与抛物线,得,解得(舍),即P(6,14);当PBAB时,PB的解析式为y2x+3,联立PB与抛物线,得,解得(舍),即P(4,5),综上

9、所述:PAB是以AB为直角边的直角三角形,点P的坐标(6,14)(4,5);(3)如图:,M(t,t2+t+1),Q(t, t+),MQt2+SMABMQ|xBxA|(t2+)2t2+,当t0时,S取最大值,即M(0,1)由勾股定理,得AB,设M到AB的距离为h,由三角形的面积,得h点M到直线AB的距离的最大值是【答案点睛】本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键21、解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天根据题意,得,解得x=1经检验,x=1是方程的解

10、且符合题意1.5 x=2甲,乙两公司单独完成此项工程,各需1天,2天(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y1500)元,根据题意得12(y+y1500)=10100解得y=5000,甲公司单独完成此项工程所需的施工费:15000=100000(元);乙公司单独完成此项工程所需的施工费:2(50001500)=105000(元);让一个公司单独完成这项工程,甲公司的施工费较少【答案解析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可(2)分别求得两个公司施工所需费用后比较即可得到结论22、(2)y=2x+2;(2)

11、y=【答案解析】(2)由cosABO,可得到tanABO2,从而可得到k2;(2)先求得A、B的坐标,然后依据中点坐标公式可求得点P的坐标,将点P的坐标代入反比例函数的解析式可求得m的值【题目详解】(2)cosABO=,tanABO=2又OA=2OB=2B(-2,0)代入y=kx+2得k=2一次函数的解析式为y=2x+2(2)当x=0时,y=2,A(0,2)当y=0时,2x+2=0,解得:x=2B(2,0)AC是PCB的中线,P(2,4)m=xy=24=4,反例函数的解析式为y=【答案点睛】本题主要考查的是反比例函数与一次函数的交点、锐角三角函数的定义、中点坐标公式的应用,确定一次函数系数kt

12、anABO是解题的关键23、(1)y=x3(2)1【答案解析】(1)由已知先求出a,得出点A的坐标,再把A的坐标代入一次函数y=kx-3求出k的值即可求出一次函数的解析式;(2)易求点B、C的坐标分别为(n,),(n,n-3)设直线y=x-3与x轴、y轴分别交于点D、E,易得OD=OE=3,那么OED=45根据平行线的性质得到BCA=OED=45,所以当ABC是等腰直角三角形时只有AB=AC一种情况过点A作AFBC于F,根据等腰三角形三线合一的性质得出BF=FC,依此得出方程-1=1-(n-3),解方程即可【题目详解】解:(1)反比例y=的图象过点A(4,a),a=1,A(4,1),把A(4,

13、1)代入一次函数y=kx3,得4k3=1,k=1,一次函数的解析式为y=x3;(2)由题意可知,点B、C的坐标分别为(n,),(n,n3)设直线y=x3与x轴、y轴分别交于点D、E,如图,当x=0时,y=3;当y=0时,x=3,OD=OE,OED=45直线x=n平行于y轴,BCA=OED=45,ABC是等腰直角三角形,且0n4,只有AB=AC一种情况,过点A作AFBC于F,则BF=FC,F(n,1),1=1(n3),解得n1=1,n2=4,0n4,n2=4舍去,n的值是1【答案点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,等腰直角三角形的性质,难度适中24、2,

14、1,0,1,2;【答案解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可【题目详解】解:解不等式(1),得解不等式(2),得x2 所以不等式组的解集:3x2 它的整数解为:2,1,0,1,225、 (1)PMPN, PMPN;(2)PMN是等腰直角三角形,理由详见解析;(3)【答案解析】(1)利用三角形的中位线得出PMCE,PNBD,进而判断出BDCE,即可得出结论,再利用三角形的中位线得出PMCE得出DPMDCA,最后用互余即可得出结论;(2)先判断出ABDACE,得出BDCE,同(1)的方法得出PMBD,PNBD,即可得出PMPN,同(1)的

15、方法即可得出结论;(3)方法1、先判断出MN最大时,PMN的面积最大,进而求出AN,AM,即可得出MN最大AM+AN,最后用面积公式即可得出结论方法2、先判断出BD最大时,PMN的面积最大,而BD最大是AB+AD14,即可【题目详解】解:(1)点P,N是BC,CD的中点,PNBD,PNBD,点P,M是CD,DE的中点,PMCE,PMCE,ABAC,ADAE,BDCE,PMPN,PNBD,DPNADC,PMCE,DPMDCA,BAC90,ADC+ACD90,MPNDPM+DPNDCA+ADC90,PMPN,故答案为:PMPN,PMPN,(2)由旋转知,BADCAE,ABAC,ADAE,ABDAC

16、E(SAS),ABDACE,BDCE,同(1)的方法,利用三角形的中位线得,PNBD,PMCE,PMPN,PMN是等腰三角形,同(1)的方法得,PMCE,DPMDCE,同(1)的方法得,PNBD,PNCDBC,DPNDCB+PNCDCB+DBC,MPNDPM+DPNDCE+DCB+DBCBCE+DBCACB+ACE+DBCACB+ABD+DBCACB+ABC,BAC90,ACB+ABC90,MPN90,PMN是等腰直角三角形,(3)方法1、如图2,同(2)的方法得,PMN是等腰直角三角形,MN最大时,PMN的面积最大,DEBC且DE在顶点A上面,MN最大AM+AN,连接AM,AN,在ADE中,

17、ADAE4,DAE90,AM2,在RtABC中,ABAC10,AN5,MN最大2+57,SPMN最大PM2MN2(7)2方法2、由(2)知,PMN是等腰直角三角形,PMPNBD,PM最大时,PMN面积最大,点D在BA的延长线上,BDAB+AD14,PM7,SPMN最大PM272【答案点睛】本题考查旋转中的三角形,关键在于对三角形的所有知识点熟练掌握.26、(1);(2)【答案解析】(1)根据待定系数法即可求解;(2)根据题意知,根据三角形面积公式列方程即可求解【题目详解】(1)根据题意得:,解得:,抛物线的表达式为:;(2)抛物线与抛物线关于直线对称,抛物线的对称轴为直线抛物线的对称轴为直线,

18、抛物线与轴交于点两点且点在点左侧,的横坐标为:,令,则,解得:,令,则,点的坐标分别为,点的坐标为,,,即,解得:或,抛物线与抛物线关于直线对称,抛物线的对称轴为直线,抛物线的表达式为或【答案点睛】本题属于二次函数综合题,涉及了待定系数法求函数解析式、一元二次方程的解及三角形的面积,第(2)问的关键是得到抛物线的对称轴为直线27、(1);(2)详见解析;(3)AE=【答案解析】(1)由四边形ABCD是正方形,直角MPN,易证得BOECOF(ASA),则可证得S四边形OEBF=SBOC=S正方形ABCD;(2)易证得OEGOBE,然后由相似三角形的对应边成比例,证得OGOB=OE2,再利用OB与BD的关系,OE与EF的关系,即可证得结论;(3)首先设AE=x,则BE=CF=1x,BF=x,继而表示出BEF与COF的面积之和,然后利用二次函数的最值问题,求得AE的长【题目详解】(1)四边形ABCD是正方形,OB=OC,OBE=OCF=45,BOC=90,BOF+COF=90,EOF=90,BOF+COE=90,BOE=COF,在BOE和COF中, BOECOF(ASA),S四边形OEBF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论