




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1我国古代数学名著算法统宗中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是
2、:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A1盏B3盏C5盏D9盏2已知三棱锥的体积为,且平面平面PBC,那么三棱锥外接球的体积为( )ABCD3已知是空间中两条不同的直线,是两个不同的平面,有以下结论: .其中正确结论的个数是( )A0B1C2D34已知复数,则复数在复平面内对应的点在( )A第一象限B第二象限C第三象限D第四象限5若函数有三个零点,则实数的取值范围为( )ABCD6设随机变量 ,则( )ABCD7设随机变量,随机变量,若,则( )ABCD8汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速
3、度下的燃油效率情况. 下列叙述中正确的是( )A消耗1升汽油,乙车最多可行驶5千米B以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C甲车以80千米/小时的速度行驶1小时,消耗10升汽油D某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油9下列几种推理中是演绎推理的序号为( )A由,猜想B半径为的圆的面积,单位圆的面积C猜想数列,的通项为D由平面直角坐标系中,圆的方程为推测空间直角坐标系中球的方程为10直线的倾斜角为( )ABCD11已知,若;,那么p是q的( )A充要条件B既不充分也不必要条件C充分不必要条件D必要不充分条件12已知甲、乙、丙三名同学同时独立地解答
4、一道导数试题,每人均有的概率解答正确,且三个人解答正确与否相互独立,在三人中至少有两人解答正确的条件下,甲解答不正确的概率( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数,且过原点的直线与曲线相切,若曲线与直线轴围成的封闭区域的面积为,则的值为_14若实数满足不等式组则的最小值是_,最大值是_15已知抛物线,过焦点作直线与抛物线交于点,两点,若,则点的坐标为 _16已知是两个非零向量,且,则的最大值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列的前项和为,且.(1)求数列的通项公式;(2)设数列的前项和为,证明:.18(12分
5、)某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为现有10件产品,其中7件是一等品,3件是二等品.(1)随机选取1件产品,求能够通过检测的概率;(2)随机选取3件产品,(i)记一等品的件数为,求的分布列;(ii)求这三件产品都不能通过检测的概率19(12分)按照国家质量标准:某种工业产品的质量指标值落在内,则为合格品,否则为不合格品某企业有甲乙两套设备生产这种产品,为了检测这两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本对规定的质量指标值进行检测表1是甲套设备的样本频数分布表,图1是乙套设备的样本频率分布直方图表1:
6、甲套设备的样本频数分布表(1)将频率视为概率,若乙套设备生产了5000件产品,则其中合格品约有多少件?(2)填写下面22列联表,并根据列联表判断是否有95%的把握认为这种产品的质量指标值与甲乙两套设备的选择有关:20(12分)(本小题满分12分)在等比数列中,.(1)求;(2)设,求数列的前项和.21(12分)已知函数.(1)当时,求的极值;(2)当时,讨论的单调性;(3)若对任意的,恒有成立,求实数的取值范围.22(10分)已知函数,当时,函数有极小值.(1)求的解析式;(2)求在上的值域.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目
7、要求的。1、B【解析】设塔顶的a1盏灯,由题意an是公比为2的等比数列,S7=181,解得a1=1故选B2、D【解析】试题分析:取中点,连接,由知,则,又平面平面,所以平面,设,则,又,则,显然是其外接球球心,因此故选D考点:棱锥与外接球,体积3、B【解析】分析:根据直线与平面的位置关系的判定定理和性质定理,即可作出判定得到结论.详解:由题意,对于中,若,则两平面可能是平行的,所以不正确;对于中,若,只有当与相交时,才能得到,所以不正确;对于中,若,根据线面垂直和面面垂直的判定定理,可得,所以是正确的;对于中,若,所以是不正确的,综上可知,正确命题的个数只有一个,故选B.点睛:本题考查线面位置
8、关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直4、D【解析】因为,所以复数在复平面内对应的点为,在第四象限,选D.5、A【解析】令分离常数,构造函数,利用导数研究的单调性和极值,结合与有三个交点,求得的取值范围.【详解】方程可化为,令,有,令可知函数的增区间为,减区间为、,则,当时,则若函数有3个零点,实数的取值范围为故选A.【点睛】本小题主要考查利用导数研究函数的零点,考查利用
9、导数研究函数的单调性、极值,考查化归与转化的数学思想方法,属于中档题.6、A【解析】根据正态分布的对称性即可求得答案.【详解】由于,故,则,故答案为A.【点睛】本题主要考查正态分布的概率计算,难度不大.7、A【解析】试题分析:随机变量,解得,故选C考点:1二项分布;2n次独立重复试验方差8、D【解析】解:对于A,由图象可知当速度大于40km/h时,乙车的燃油效率大于5km/L,当速度大于40km/h时,消耗1升汽油,乙车的行驶距离大于5km,故A错误;对于B,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,以相同速度行驶相同路程,三辆车中,甲车消耗
10、汽油最少,故B错误;对于C,由图象可知当速度为80km/h时,甲车的燃油效率为10km/L,即甲车行驶10km时,耗油1升,故行驶1小时,路程为80km,燃油为8升,故C错误;对于D,由图象可知当速度小于80km/h时,丙车的燃油效率大于乙车的燃油效率,用丙车比用乙车更省油,故D正确故选D考点:1、数学建模能力;2、阅读能力及化归思想.9、B【解析】根据演绎推理、归纳推理和类比推理的概念可得答案.【详解】A. 是由特殊到一般,是归纳推理.B. 是由一般到特殊,是演绎推理.C. 是由特殊到一般,是归纳推理.D. 是由一类事物的特征,得到另一类事物的特征,是类比推理.故选:B【点睛】本题考查对推理
11、类型的判断,属于基础题.10、B【解析】试题分析:记直线的倾斜角为,故选B.考点:直线的倾斜角.11、C【解析】转化,为,分析即得解【详解】若命题q为真,则,等价于因此p是q的充分不必要条件故选:C【点睛】本题考查了充分必要条件的判定,及存在性问题的转化,考查了学生逻辑推理,转化划归,数学运算的能力,属于基础题.12、C【解析】记“三人中至少有两人解答正确”为事件;“甲解答不正确”为事件,利用二项分布的知识计算出,再计算出,结合条件概率公式求得结果.【详解】记“三人中至少有两人解答正确”为事件;“甲解答不正确”为事件则;本题正确选项:【点睛】本题考查条件概率的求解问题,涉及到利用二项分布公式求
12、解概率的问题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:先根据导数几何意义求切点以及切线方程,再根据定积分求封闭区域的面积,解得的值.详解:设切点,因为,所以所以当时封闭区域的面积为因此,当时,同理可得,即点睛:利用定积分求曲边图形面积时,一定要找准积分上限、下限及被积函数当图形的边界不同时,要分不同情况讨论14、3 9 【解析】根据约束条件画出可行域,将问题转化为求解在轴截距的最大值和最小值,由图象可知过时,最小;过时,最大,求出坐标,代入可得结果.【详解】由约束条件可得可行域如下图阴影部分所示:令,则求的最大值和最小值即为求在轴截距的最大值和最小值由平移可知,当过
13、时,最小;过时,最大由得:;由得:,本题正确结果:;【点睛】本题考查线性规划中的最值问题的求解,关键是能够将问题转化为直线在轴截距的最值问题的求解,属于常考题型.15、或 【解析】如图所示,求得,由,可得,解得,可得直线的方程,与抛物线方程联立,即可求解.【详解】如图所示,可得,由,由抛物线的定义,可得,解得,代入抛物线的方程可得或,当时,则直线的方程为,即,代入,解得;同理当时,解得,故答案为或.【点睛】本题主要考查了抛物线的定义,标准方程及其性质,以及直线与抛物线的位置关系的应用,着重考查了推理能力与计算能力,属于中档试题.16、【解析】构造,从而可知,于是的最大值可以利用基本不等式得到答
14、案.【详解】由题意,令,所以,所以,所以,所以,当且仅当,且时取等号.故答案为.【点睛】本题主要考查平面向量的几何意义,模,基本不等式等知识,考查学生的运算求解能力,难度较大.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】试题分析:(1)由时,利用,结合等差数列的定义和通项公式即可得到数列的通项公式;(2)由(1)得,运用裂项相消法求和,化简整理,然后利用放缩法可证明.试题解析:(1)当n=1时,a1=S1=3;当n2时,an=Sn-Sn-1=n2+2n-=2n+1.当n=1时,也符合上式,故an=2n+1.(2)因为=,故Tn= 【方法
15、点晴】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2) ; (3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.18、(1)(2)()见解析()见解析【解析】(1)设随机选取一件产品,能通过检测的事件为,,事件等于事件“选取一等品都通过或者选取二等品通过检测”,由此能求出随机选取1件产品,能够通过检测的概率;(2)(i)随机变量的取值有:0,1,2,3,分别求出其概率即可(ii)设随机选取3件产品都不能通过检测的事件为,事件等于事件“随机选取3件产品都是二等品且都不
16、能通过检测”,由此能求这三件产品都不能通过检测的概率【详解】(1)设随机选取一件产品,能通过检测的事件为,事件等于事件“选取一等品都通过或者选取二等品通过检测”,则. (2)(i)的可能取值为. , , , . 故的分布列为0123(ii)设随机选取3件产品都不能通过检测的事件为,事件等于事件“随机选取3件产品都是二等品且都不能通过检测”,所以【点睛】本题考查等可能事件的概率,考查离散型随机变量的分布列,考查独立重复试验的概率公式,本题是一个概率的综合题目19、(1)800件;(2)见解析;【解析】(1) 结合频数分布表,求出满足条件的概率,再乘以5000即可;(2)求出22列联表,计算K2值
17、,判断即可【详解】(1)由图知,乙套设备生产的不合格品率约为;乙套设备生产的5000件产品中不合格品约为(件);(2)由表1和图得到列联表:甲套设备乙套设备合计合格品484290不合格品2810合计5050100将列联表中的数据代入公式计算得;有95%的把握认为产品的质量指标值与甲、乙两套设备的选择有关;【点睛】本题考查了频率分布直方图与独立性检验的应用问题,准确计算是关键,是基础题20、 (1).(2).【解析】试题分析:(1)设的公比为q,依题意得方程组,解得,即可写出通项公式.(2)因为,利用等差数列的求和公式即得.试题解析:(1)设的公比为q,依题意得,解得,因此,.(2)因为,所以数
18、列的前n项和.考点:等比数列、等差数列.21、(1)极小值,无极大值;(2)参考解析;(3)【解析】试题分析:第一问,将代入中确定函数的解析式,对进行求导,判断的单调性,确定在时,函数有极小值,但无极大值,在解题过程中,注意函数的定义域;第二问,对求导,的根为和,所以要判断函数的单调性,需对和的大小进行3种情况的讨论;第三问,由第二问可知,当时,在为减函数,所以为最大值,为最小值,所以的最大值可以求出来,因为对任意的恒成立,所以,将的最大值代入后,又是一个恒成立,整理表达式,即对任意恒成立,所以再求即可.试题解析:(1)当时,由,解得. 在上是减函数,在上是增函数. 的极小值为,无极大值. (2). 当时,在和上是减函数,在上是增函数; 当时,在上是减函数; 当时,在和上是减函数,在上是增函数. (3)当时,由(2)可知在上是减函数,. 由对任意的恒成立,即对任
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗行业大数据隐私保护在2025年医疗数据安全事件应急处理中的应用报告
- 离职无解除劳动合同协议
- 油漆墙体广告合同协议书
- 风险合同协议书模板模板
- 风电场风机维修合同范本
- 项目居间三方合同协议书
- 鸽子销售饲养协议书模板
- 联合建房合同协议书范本
- 父母房屋补偿协议书范本
- 汽车委托交易合同协议书
- GB/T 20424-2025重有色金属精矿产品中有害元素的限量规范
- 半结构化结构化面试题目
- 干部履历表(中共中央组织部2015年制)
- 2023年农村土地承包经营权确权登记颁证项目作业指导书
- 节日氛围营造投标方案(技术方案)
- 安全注射完整
- 乐高大颗粒搭建课件:救护车
- 领会《护士条例》课件
- 城镇燃气室内工程施工与质量验收规范(CJJ94-)宣贯培训
- 浆细胞性乳腺炎知识讲座
- 八年级物理上册《实验题》专项训练题及答案(人教版)
评论
0/150
提交评论