版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题
2、目要求的。1在的展开式中,含的项的系数是( )A-832B-672C-512D-1922设则( )A都大于2B至少有一个大于2C至少有一个不小于2D至少有一个不大于23x+1A第5项B第5项或第6项C第6项D不存在4已知函数,则函数的大致图象是( )ABCD5设全集,集合,则集合( )ABCD6中国有个名句“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指孙子算经 中记载的算筹. 古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算, 算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯计数一样,把 各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位、
3、百位、万位数用纵式表示, 十位、千位、十万位用横式表示, 以此类推例如 8455 用算筹表示就是,则以下用算筹表示的四位数正确的为( )ABCD7直线的斜率为( )ABCD8设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为ABCD9利用独立性检验的方法调查大学生的性别与爱好某项运动是否有关,通过随机询问111名不同的大学生是否爱好某项运动,利用列联表,由计算可得P(K2k)1111141124111111141111k2615384141245534686911828参照附表,得到的正确结论是( )A有84%以上的把握认为“爱好该项运动与性别无关”B有84%以
4、上的把握认为“爱好该项运动与性别有关”C在犯错误的概率不超过114%的前提下,认为“爱好该项运动与性别有关”D在犯错误的概率不超过114%的前提下,认为“爱好该项运动与性别无关”10如图,网格纸上小正方形的边长为1,粗线画出的是某空间几何体的三视图,则该几何体的表面积为( )ABCD11设为虚数单位,若复数满足,则复数()ABCD12若实数满足,则的取值范围为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数,当(e为自然常数),函数的最小值为3,则的值为_.14已知,区域满足:,设,若对区域内的任意两点,都有成立,则的取值范围是_.15若直线是曲线的切线,也是曲线的切
5、线,则 16已知直线在矩阵对应的变换作用下变为直线:,则直线的方程为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知命题:实数满足(其中),命题:实数满足(1)若,且与都为真命题,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.18(12分)某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不做广告宣传且每件获利a元的前提下,可卖出b件;若做广告宣传,广告费为n千元比广告费为千元时多卖出件。(1)试写出销售量与n的函数关系式;(2)当时,厂家应该生产多少件产品,做几千元的广告,才能获利最大?19(12分)m为何值时,函数(1)在上有两个
6、零点;(2)有两个零点且均比-1大20(12分)第18届国际篮联篮球世界杯将于2019年8月31日至9月15日在中国北京、广州等八座城市举行.届时,甲、乙、丙、丁四名篮球世界杯志愿者将随机分到、三个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人不在同一个岗位服务的概率;(2)设随机变量为这四名志愿者中参加岗位服务的人数,求的分布列及数学期望.21(12分)现从某医院中随机抽取了七位医护人员的关爱患者考核分数(患者考核:10分制),用相关的特征量表示;医护专业知识考核分数(试卷考试:100分制),用相关的特征量表示,数据如下表:()求关于的线性回归方程(计算结果精确到0.01);(
7、)利用(I)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计某医护人员的医护专业知识考核分数为95分时,他的关爱患者考核分数(精确到0.1);()现要从医护专业知识考核分数95分以下的医护人员中选派2人参加组建的“九寨沟灾后医护小分队”培训,求这两人中至少有一人考核分数在90分以下的概率.附:回归方程中斜率和截距的最小二乘法估计公式分别为22(10分)为了纪念国庆70周年,学校决定举办班级黑板报主题设计大赛,高二某班的同学将班级长米、宽米的黑板做如图所示的区域划分:取中点,连接,以为对称轴,过两点作一抛物线弧,在抛物线弧上取一点,作垂足为,作交于点.在四边形内设计主
8、题,其余区域用于文字排版,设的长度为米.(1)求长度的表达式,并写出定义域;(2)设四边形面积为,求当为何值时, 取最大值,最大为多少平方米?参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求出展开式中 的系数减2倍的系数加的系数即可.【详解】含的项的系数即求展开式中 的系数减2倍的系数加的系数即含的项的系数是故选A.【点睛】本题考查二项式定理,属于中档题2、C【解析】由基本不等式,a,b都是正数可解得【详解】由题a,b,c都是正数,根据基本不等式可得,若,都小于2,则与不等式矛盾,因此,至少有一个不小于2;当,都等于
9、2时,选项A,B错误,都等于3时,选项D错误选C.【点睛】本题考查了基本不等式,此类题干中有多个互为倒数的项,一般都可以先用不等式求式子范围,再根据题目要求解题3、C【解析】根据题意,写出(x+1x)10展开式中的通项为Tr+1,令x【详解】解:根据题意,(x+1x)令10-2r=0,可得r=5;则其常数项为第5+1=6项;故选:C【点睛】本题考查二项式系数的性质,解题的关键是正确应用二项式定理,写出二项式展开式,其次注意项数值与r的关系,属于基础题4、A【解析】根据函数的奇偶性和特殊值进行排除可得结果【详解】由题意,所以函数为偶函数,其图象关于轴对称,排除D;又,所以排除B,C故选A【点睛】
10、已知函数的解析式判断图象的大体形状时,可根据函数的奇偶性,判断图象的对称性:如奇函数在对称的区间上单调性一致,偶函数在对称的区间上单调性相反,这是判断图象时常用的方法之一5、B【解析】由题得,所以,故选B.6、D【解析】根据题意直接判断即可.【详解】根据“各位数码的筹式需要纵横相间,个位、百位、万位数用纵式表示,十位、千位、十万位用横式表示”的原则,只有D符合,故选D.【点睛】本题主要考查合情推理,属于基础题型.7、A【解析】将直线方程化为斜截式,可得出直线的斜率【详解】将直线方程化为斜截式可得,因此,该直线的斜率为,故选A【点睛】本题考查直线斜率的计算,计算直线斜率有如下几种方法:(1)若直
11、线的倾斜角为且不是直角,则直线的斜率;(2)已知直线上两点、,则该直线的斜率为;(3)直线的斜率为;(4)直线的斜率为.8、B【解析】分析:作图,D为MO 与球的交点,点M为三角形ABC的中心,判断出当平面时,三棱锥体积最大,然后进行计算可得详解:如图所示,点M为三角形ABC的中心,E为AC中点,当平面时,三棱锥体积最大此时,,点M为三角形ABC的中心中,有故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当平面时,三棱锥体积最大很关键,由M为三角形ABC的重心,计算得到,再由勾股定理得到OM,进而得到结果,属于较难题型9、B【解析】解:计算K
12、28.8156.869,对照表中数据得出有1.114的几率说明这两个变量之间的关系是不可信的,即有11.114=8.4%的把握说明两个变量之间有关系,本题选择B选项.10、D【解析】由三视图还原出原几何体,然后计算其表面积【详解】由三视图知原几何体是一个圆锥里面挖去一个圆柱,尺寸见三视图圆锥的母线长为,故选:D.【点睛】本题考查组合体的表面积,解题关键是由三视图还原出原几何体,确定几何体的结构11、D【解析】先由题意得到,根据复数的除法运算法则,即可得出结果.【详解】因为,所以.故选:D【点睛】本题主要考查复数的运算,熟记除法运算法则即可,属于基础题型.12、C【解析】分析:作出不等式组对应的
13、平面区域,利用目标函数的几何意义,即可求z的取值范围.详解:作出不等式组对应的平面区域如图:设,得,平移直线,由图象可知当直线经过点时,直线的截距最小,此时z最小,为,当直线经过点时,直线的截距最大,此时时z最大,为,即.故选:C.点睛:本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出导函数,由导函数求出极值,当极值只有一个时也即为最值【详解】,当时,则,在上是减函数,(舍去)当时,当时,递减,当时,递增,符合题意故答案为【点睛】本题考查由导数研究函数的最值解题时求出导函
14、数,利用导函数求出极值,如果极值有多个,还要与区间端点处函数值比较大小得最值,如果在区间内只有一个极值,则这个极值也是相应的最值14、【解析】由题意可知直线与圆相切,由相切定义可得,令,由可求其范围.【详解】由题意可得:直线与圆相切即,化简得:,令故答案为:【点睛】本题考查了直线与圆的位置关系,考查了三角换元法,本题的关键在于题干条件的转化,由线性规划知识可知位于直线同一侧的点正负性相同,满足题目要求.属于难题.15、【解析】试题分析:对函数求导得,对求导得,设直线与曲线相切于点,与曲线相切于点,则,由点在切线上得,由点在切线上得,这两条直线表示同一条直线,所以,解得.【考点】导数的几何意义【
15、名师点睛】函数f (x)在点x0处的导数f (x0)的几何意义是曲线yf (x)在点P(x0,y0)处的切线的斜率相应地,切线方程为yy0f (x0)(xx0)注意:求曲线切线时,要分清在点P处的切线与过点P的切线的不同16、【解析】分析:用相关点法求解,设直线上的点为 直线上的点为,所以,代入直线的方程详解:设直线上的点为 直线上的点为,直线在矩阵对应的变换作用下所以:,代入直线的方程整理可得直线的方程为。点睛:理解矩阵的计算规则和相互之间的转换。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】记命题:,命题:(1)当时,求出,根据与均为真命题,即
16、可求出的范围;(2)求出,通过是的必要不充分条件,得出,建立不等式组,求解即可.【详解】记命题:,命题:(1)当时,与均为真命题,则,的取值范围是.(2),是的必要不充分条件,集合,解得,综上所述,的取值范围是.【点睛】1.命题真假的判断(1)真命题的判断方法:真命题的判定过程实际就是利用命题的条件,结合正确的逻辑推理方法进行正确地逻辑推理的一个过程,判断命题为真的关键是弄清命题的条件,选择正确的逻辑推理方法(2)假命题的判断方法:通过构造一个反例否定命题的正确性,这是判断一个命题为假命题的常用方法(3)一些命题的真假也可以依据客观事实作出判断2.从逻辑关系上看,若,但,则是的充分不必要条件;
17、若,但,则是的必要不充分条件;若,且,则是的充要条件;若,且,则是的既不充分也不必要条件.18、 (1)(2)【解析】试题分析:(1)根据若做广告宣传,广告费为n千元比广告费为千元时多卖出件,可得,利用叠加法可求得.(2)根据题意在时,利润,可利用求最值.试题解析:(1)设表示广告费为0元时的销售量,由题意知,由叠加法可得即为所求。(2)设当时,获利为元,由题意知,欲使最大,则,易知,此时.考点:叠加法求通项,求最值.19、(1)(2)【解析】(1)由二次方程根的分布知识求解(2)由二次方程根的分布知识求解【详解】(1) (2)设的两个零点分别为由题意:【点睛】本题考查二次方程根的分布:,方程
18、的两根(1)两根都大于,(2)两根都小于,(3)一根大于,一根小于,(4)两根都在区间上,20、 (1) (2)见解析【解析】(1)先记甲、乙两人同时参加同一岗位服务为事件,根据题意求出,再由,即可得出结果;(2)根据题意,先确定可能取得的值,分别求出对应概率,即可得出分布列,从而可计算出期望.【详解】解:(1)记甲、乙两人同时参加同一岗位服务为事件,那么.所以,甲、乙两人不在同一岗位服务的概率是.(2)由题意,知随机变量可能取得的值为1,2.则.所以.所以所求的分布列是所以.【点睛】本题主要考查古典概型以及离散型随机变量的分布列与期望,熟记概念以及概率计算公式即可,属于常考题型.21、 (1) .(2) 随着医护专业知识的提高,个人的关爱患者的心态会变得更温和,耐心,因此关爱患者的考核分数也会稳步提高.(3) .【解析】分析:(1)根据表中数据计算、,求出回归系数,写出回归方程;(2)根据()中的线性回归方程知x与y是正相关,计算x=95时y的值即可;(3)从中任选连个的所有情况有共六
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社区医生培训
- 交通事故协商赔偿协议书3篇
- 神内科护理疑难病例
- 端午节音乐活动教案
- 河南科技大学《日语中级听力》2021-2022学年第一学期期末试卷
- 2024版工程建筑外架施工安全合同2篇
- 花家湖学校年度办公用品购货合同
- 2024年装载机买卖合同技术更新服务合同2篇
- 女方哺乳期2024年离婚协议书参考
- 《抗菌药物合理运用》课件
- 国投集团笔试测评题
- (高清版)DZT 0214-2020 矿产地质勘查规范 铜、铅、锌、银、镍、钼
- 2023年凉山州木里藏族自治县考试招聘事业单位工作人员考试真题及答案
- 六西格玛项目定义
- 职业生涯规划主题班会1
- 【川教版】《生态 生命 安全》四年级上册第10课《认识传染病》课件
- DB35T 2061-2022 村庄规划编制规程
- 创新实践组织创新成功的案例分享
- 谈谈改革开放四十多年我的家乡的变化
- 2024年上海中考语文记叙文阅读专题一写人记事散文(原卷版 +解析版)
- 监理工作中变更管理的规范与应对措施
评论
0/150
提交评论