山西省孝义市第四中学2022年数学高二第二学期期末质量检测试题含解析_第1页
山西省孝义市第四中学2022年数学高二第二学期期末质量检测试题含解析_第2页
山西省孝义市第四中学2022年数学高二第二学期期末质量检测试题含解析_第3页
山西省孝义市第四中学2022年数学高二第二学期期末质量检测试题含解析_第4页
山西省孝义市第四中学2022年数学高二第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知双曲线,若其过一、三象限的渐近线的倾斜角,则双曲线的离心率的取值范围是( )ABCD2德国数学家狄利克在1837年时提出:“如果对于x的每一个值,y总有一个完全确定的值与之对应,

2、则y是x的函数,”这个定义较清楚地说明了函数的内涵只要有一个法则,使得取值范围中的每一个值,有一个确定的y和它对应就行了,不管这个对应的法则是公式、图象,表格述是其它形式已知函数f(x)由右表给出,则的值为()A0B1C2D33如图,函数的图象在点P处的切线方程是,则()A4B3CD4某中学从4名男生和3名女生中推荐4人参加某高校自主招生考试,若这4人中必须既有男生又有女生,则不同的选法共有( )A34 种B35 种C120 种D140 种5若函数f(x)=2x+12xA( -,-1)B(C(0,1)D(1,+)6如果(,表示虚数单位),那么( )A1BC2D07已知对称轴为坐标轴的双曲线的两

3、渐近线方程为,若双曲线上有一点,使,则双曲线的焦点( )A在轴上B在轴上C当时在轴上D当时在轴上8若是关于的实系数一元二次方程的一个根,则( )A,B,C,D,9如图,是正四面体的面上一点,点到平面距离与到点的距离相等,则动点的轨迹是( )A直线B抛物线C离心率为的椭圆D离心率为3的双曲线10设离散型随机变量的分布列如右图,则的充要条件是( ) 123A BCD11设,复数,则在复平面内的对应点一定不在( )A第一象限B第二象限C第三象限D第四象限12在钝角中,角的对边分别是,若,则的面积为ABCD二、填空题:本题共4小题,每小题5分,共20分。13某市有A、B、C三所学校,各校有高三文科学生

4、分别为650人,500人,350人,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,进行成绩分析,则应从B校学生中抽取_人14当双曲线M:的离心率取得最小值时,双曲线M的渐近线方程为_15 “”是“”的_条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中一个)16已知函数在上单调递增,则的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)第十二届全国人名代表大会第五次会议和政协第十二届全国委员会第五次会议(简称两会)分别于2017年3月5日和3月3日在北京开幕,某高校学生会为了解该校学生对全国

5、两会的关注情况,随机调查了该校200名学生,并将这200名学生分为对两会“比较关注”与“不太关注”两类,已知这200名学生中男生比女生多20人,对两会“比较关注”的学生中男生人数与女生人数之比为,对两会“不太关注”的学生中男生比女生少5人.(1)该校学生会从对两会“比较关注”的学生中根据性别进行分层抽样,从中抽取7人,再从这7人中随机选出2人参与两会宣传活动,求这2人全是男生的概率.(2)根据题意建立列联表,并判断是否有99%的把握认为男生与女生对两会的关注有差异?附:,其中.0.1000.0500.0100.0012.7063.8416.63510.82818(12分)高铁、网购、移动支付和

6、共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:每周移动支付次数1次2次3次4次5次6次及以上男10873215女5464630合计1512137845(1)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,按分层抽样的方法,在我市所有“移动支付达人”中,随机抽取6名用户求抽取的6名用户中,男女用户各多少人;从这6名用户中抽取2人,求既有男“移动支付达人”又有女“移动支付达人”的概率 (2)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,填写下表,问能否在犯错误概率不超过0.01的前提

7、下,认为“移动支付活跃用户”与性别有关?非移动支付活跃用户移动支付活跃用户合计男女合计附:0.1000.0500.0102.7063.8416.63519(12分)某中学一名数学老师对全班50名学生某次考试成绩分男女生进行了统计,其中120分(含120分)以上为优秀,绘制了如下的两个频率分布直方图: (1)根据以上两个直方图完成下面的列联表: 成绩性别优秀不优秀合计男生女生总计(2)根据(1)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系?2.0722.7063.8415.0246.6357.87910.8280.150.100.050.0250.0100.0050.001(

8、3)若从成绩在130,140的学生中任取2人,求取到的2人中至少有1名女生的概率.20(12分)甲、乙两人各射击一次,击中目标的概率分别是和假设两人射击是否击中目标相互之间没有影响;每人各次射击是否击中目标,相互之间也没有影响(1)求甲射击4次,至少有1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率21(12分)在平面直角坐标系中,已知椭圆:的离心率为,且过点(1)求椭圆的方程;(2)设点,点在轴上,过点的直线交椭圆交于,两点若直线的斜率为,且,求点的坐标;设直线,的斜率分别为,是否存在定点,使得恒成立?若存在,求出点坐标;若不存在,请说明理由22(1

9、0分)如图,在多面体ABCDEF中,平面ADE平面ABCD,四边形ABCD是边长为2的正方形,ADE是等腰直角三角形且ADE=2,EF平面ADE(1)求异面直线AE和DF所成角的大小;(2)求二面角B-DF-C的平面角的大小参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析:利用过一、三象限的渐近线的倾斜角,可得1,即可求出双曲线的离心率e的取值范围.详解:双曲线=1(a0,b0)的一条渐近线方程为y=x,由过一、三象限的渐近线的倾斜角,tantan,1,13,21+4,即2e24,解得e2,故选:B点睛:求离心率的

10、常用方法有以下两种:(1)求得的值,直接代入公式求解;(2)列出关于的齐次方程(或不等式),然后根据,消去后转化成关于的方程(或不等式)求解2、D【解析】采用逐层求解的方式即可得到结果.【详解】,则,又,故选D【点睛】本题主要考查函数的基础知识,强调一一对应性,属于基础题3、A【解析】由条件可得,【详解】因为函数的图象在点P处的切线方程是所以,所以4故选:A【点睛】本题考查的是导数的几何意义,较简单.4、A【解析】分析:根据题意,选用排除法,分3步,计算从7人中,任取4人参加志愿者活动选法,计算选出的全部为男生或女生的情况数目,由事件间的关系,计算可得答案详解:分3步来计算,从7人中,任取4人

11、参加志愿者活动,分析可得,这是组合问题,共C74=35种情况;选出的4人都为男生时,有1种情况,因女生只有3人,故不会都是女生,根据排除法,可得符合题意的选法共35-1=34种;故选A点睛:本题考查计数原理的运用,注意对于本类题型,可以使用排除法,即当从正面来解所包含的情况比较多时,则采取从反面来解,用所有的结果减去不合题意的结果5、C【解析】由f(x)为奇函数,根据奇函数的定义可求a,代入即可求解不等式【详解】f(x)=2xf(x)=f(x)即2整理可得,1+1a2x=a2xa=1,f(x)=2f(x)=2x2x+12整理可得,2x12x2解可得,0 x1故选C【点睛】本题主要考查了奇函数的

12、定义的应用及分式不等式的求解,属于基础试题6、B【解析】分析:复数方程左边分子、分母同乘分母的共轭复数,化简为的形式,利用复数相等求出即可详解:解得故选点睛:本题主要考查了复数相等的充要条件,运用复数的乘除法运算法则求出复数的表达式,令其实部与虚部分别相等即可求出答案7、B【解析】设出双曲线的一般方程,利用题设不等式,令二者平方,整理求得的,进而可判断出焦点的位置【详解】渐近线方程为,平方,两边除,双曲线的焦点在轴上.故选:B.【点睛】本题考查已知双曲线的渐近线方程求双曲线的方程,考查对双曲线标准方程的理解与运用,求解时要注意焦点落在轴或轴的特点,考查学生分析问题和解决问题的能力8、B【解析】

13、由题意可知,关于的实系数一元二次方程的两个虚根分别为和,然后利用韦达定理可求出实数与的值.【详解】由题意可知,关于的实系数一元二次方程的两个虚根分别为和,由韦达定理得,解得.故选B.【点睛】本题考查利用实系数方程的虚根求参数,解题时充分利用实系数方程的两个虚根互为共轭复数这一性质,并结合韦达定理求解,也可以将虚根代入方程,利用复数相等来求解,考查运算求解能力,属于中等题.9、C【解析】分析:由题设条件将点P到平面ABC距离与到点V的距离相等转化成在面VBC中点P到V的距离与到定直线BC的距离比是一个常数,依据圆锥曲线的第二定义判断出其轨迹的形状详解:正四面体VABC面VBC不垂直面ABC,过P

14、作PD面ABC于D,过D作DHBC于H,连接PH,可得BC面DPH,所以BCPH,故PHD为二面角VBCA的平面角令其为则RtPGH中,|PD|:|PH|=sin(为VBCA的二面角的大小)又点P到平面ABC距离与到点V的距离相等,即|PV|=|PD|PV|:|PH|=sin1,即在平面VBC中,点P到定点V的距离与定直线BC的距离之比是一个常数sin,又在正四面体VABC,VBCA的二面角的大小有:sin=1,由椭圆定义知P点轨迹为椭圆在面SBC内的一部分故答案为:C点睛:(1)本题主要考查二面角、椭圆的定义、轨迹方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想(2)解答本

15、题的关键是联想到圆锥曲线的第二定义.10、B【解析】由题设及数学期望的公式可得,则的充要条件是应选答案B11、C【解析】在复平面内的对应点考查点横纵坐标的正负,分情况讨论即可.【详解】由题得, 在复平面内的对应点为.当,即时,二次函数取值范围有正有负,故在复平面内的对应点可以在一二象限.当,即时,二次函数,故在复平面内的对应点可以在第四象限.故在复平面内的对应点一定不在第三象限.故选:C【点睛】本题主要考查了复平面的基本定义与根据参数范围求解函数范围的问题,属于基础题型.12、A【解析】根据已知求出b的值,再求三角形的面积.【详解】在中,由余弦定理得:,即,解得:或.是钝角三角形,(此时为直角

16、三角形舍去).的面积为.故选A.【点睛】本题主要考查余弦定理解三角形和三角形的面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】设应从B校抽取n人,利用分层抽样的性质列出方程组,能求出结果【详解】设应从B校抽取n人,某市有A、B、C三所学校,各校有高三文科学生分别为650人,500人,350人,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,解得故答案为:1【点睛】本题考查应从B校学生中抽取人数的求法,考查分层抽样的性质等基础知识,考查运算求解能力,是基础题14、【解析】求出双曲线

17、离心率的表达式,求解最小值,求出m,即可求得双曲线渐近线方程【详解】解:双曲线M:,显然,双曲线的离心率,当且仅当时取等号,此时双曲线M:,则渐近线方程为:故答案为:【点睛】本题考查双曲线渐近线方程的求法,考查基本不等式的应用,属于基础题15、必要不充分【解析】解出的解集,根据对应的集合之间的包含关系进行判断.【详解】 , 或 “”是“”的必要不充分条件.故答案为:必要不充分【点睛】本题考查充分、必要条件充分、必要条件的三种判断方法:(1)定义法:根据进行判断(2)集合法:根据成立对应的集合之间的包含关系进行判断(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题

18、进行判断16、【解析】分析:由条件可得,由单调递增的定义可知 ,由求得交集即可得到答案详解:函数在上单调递增,时为增,即 时也为增,即有 又由单调递增的定义可知 由可得由可得故的取值范围为点睛:本题考查了分段函数的应用,考查了函数的单调性及其应用,助于分段函数的分界点的情况,是一道中档题,也是易错题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)没有99%的把握认为男生与女生对两会的关注有差异;(2)【解析】【试题分析】(1)可先设男生比较关注和不太关注的人分别为,则女生比较关注和不太关注的为,建立方程组,由此可得列联表为:,然后运用计算公式算出,借助表中的参数可以

19、断定没有99%的把握认为男生与女生对两会的关注有差异;(2)先由分层抽样的知识点算得:在男生和女生中分别抽取的人数为4人、3人,再运用古典概型的计算公式算得其概率.解: (1)设男生比较关注和不太关注的人分别为,则女生比较关注和不太关注的为,则由题意得:,因此可得列联表为:,所以没有99%的把握认为男生与女生对两会的关注有差异.(2)由分层抽样的知识点可得:在男生和女生中分别抽取的人数为4人、3人.则.18、(1) 男2人,女4人;(2);(3)见解析【解析】(1) 利用分层抽样求出抽取的6名用户中,男女用户各多少人. 利用对立事件的概率和古典概型求既有男“移动支付达人”又有女“移动支付达人”

20、的概率. (2)先完成列联表,再求的值,再判断能否在犯错误概率不超过0.01的前提下,认为“移动支付活跃用户”与性别有关.【详解】(1) 男人:2人,女人:6-2=4人; 既有男“移动支付达人”又有女“移动支付达人”的概率 . (2)由表格数据可得列联表如下:非移动支付活跃用户移动支付活跃用户合计男252045女154055合计4060100将列联表中的数据代入公式计算得: , 所以在犯错误概率不超过0.01的前提下,能认为“移动支付活跃用户”与性别有关.【点睛】(1)本题主要考查分层抽样和概率的计算,考查独立性检验,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 古典概型的解题步骤:

21、求出试验的总的基本事件数;求出事件A所包含的基本事件数;代公式=.19、(1)详见解析;(2)有95%的把握认为学生的数学成绩与性别之间有关系;(3).【解析】(1)根据表格数据填写好联表;(2)计算出的数值,由此判断出所以有95%的把握认为学生的数学成绩与性别之间有关系.(3)先计算出男生、女生分别有多少人,然后用减去全部都是男生的概率,求得所求的概率.【详解】(1) 成绩性别优秀不优秀合计男生131023女生72027总计203050(2)由(1)中表格的数据知, .因为,所以有95%的把握认为学生的数学成绩与性别之间有关系.(3)成绩在130,140的学生中男生有人,女生有人,从6名学生

22、中任取2人,共有种选法,若选取的都是男生,共有种选法;故所求事件的概率.【点睛】本小题主要考查列联表独立性检验,考查古典概型概率计算,考查对立事件,属于基础题.20、(1)(2)【解析】(1)记“甲连续射击4次至少有1次未击中目标”为事件A1. 由题意,射击4次,相当于作4次独立重复试验故P(A1)所以甲连续射击4次至少有一次未击中目标的概率为.(2)记“甲射击4次,恰有2次击中目标”为事件A2,“乙射击4次,恰有3次击中目标”为事件B2, 则 P(A2),P(B2)由于甲、乙射击相互独立,故P(A2B2)所以两人各射击4次,甲恰有2次击中目标且乙恰有3次击中目标的概率为.21、(1) (2) 存在,;【解析】(1)根据椭圆离心率及过点,建立方程组,求解即可(2)设直线的方程为:,联立椭圆方程,利用弦长公式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论