2022-2023学年山西省临汾市中垛中学高三数学文上学期期末试卷含解析_第1页
2022-2023学年山西省临汾市中垛中学高三数学文上学期期末试卷含解析_第2页
免费预览已结束,剩余5页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年山西省临汾市中垛中学高三数学文上学期期末试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知集合,则AB=()A(1,+)B1,+)C(,0(1,+)D0,1参考答案:A【考点】交集及其运算【专题】计算题;函数思想;定义法;集合【分析】先分别求出集合A和B,由此能求出AB【解答】解:集合,A=x|x0或x1,B=y|y1,AB=(1,+)故选:A【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集性质的合理运用2. 若函数的图象如右图,其中a,b为常数,则函数的大致图象是参考答案:D3.

2、一个空间四边形ABCD的四条边及对角线AC的长均为,二面角的余弦值为,则下列论断正确的是( )A.四边形ABCD的四个顶点在同一球面上且此球的表面积为B.四边形ABCD的四个顶点在同一球面上且此球的表面积为C.四边形ABC的四个顶点在同一球面上且此球的表面积为D.不存在这样的球使得四边形ABCD的四个顶点在此球面上参考答案:A略4. 为了得到函数的图像,只需把函数的图像( )A.向左平移个长度单位 B. 向右平移个长度单位C. 向左平移个长度单位 D. 向右平移个长度单位参考答案:B5. 已知a,b,c满足cba,且acac Bc(ba)0 Ccb20参考答案:A由cba且ac0知c0.由bc

3、得abac一定成立6. 复数,则(A); (B); (C); (D)参考答案:C略7. 下列函数中,既是偶函数又在单调递增的函数是( )A. B. C. D. 参考答案:B8. 已知多面体ABCDFE的每个顶点都是球的表面上,四边形ABCD为正方形,且在平面ABCD内的射影分别为,若的面积为2,则球的表面积的最小值为A B C D 参考答案:A9. 根据右边流程图输出的值是( )A11B31C51D79参考答案:D当n2时,当n3时,当n4时,当n5时,输出故选D10. 在数列中,若存在非零整数,使得对于任意的正整数均成立,那么称数列为周期数列,其中叫做数列的周期,若数列满足,如(),当数列的

4、周期最小时,该数列的前2016项的和是( )A672 B673 C1342 D1344参考答案:D考点:周期数列的性质与求和【易错点晴】本题以数列的有关知识为背景,考查的是归纳猜想的合情推理等知识的综合运用所学知识的综合问题.求解时充分借助题设条件中的有效信息,利用题设观察出这些数的特征和规律,然后再计算出,而,进而利用数列的周期性求出数列的前项和的值为.二、 填空题:本大题共7小题,每小题4分,共28分11. 已知,通过类比可推测m,n的值,则的值为参考答案:12. 若复数(bR,)的实部与虛部相等,则b=_.参考答案:213. 某市有300名学生参加数学竞赛的预赛,竞赛成绩宇服从正态分布N

5、(80,100),若规定,预赛成绩在95分或95分以上的学生参加复赛,估计进入复赛的人数是 (参考数据:(0.15)=0.5596,(1.5)=0.9332,(0.8)=0.7881) 参考答案:答案:2014. 若且sin20,则=参考答案:3考点:半角的三角函数;同角三角函数间的基本关系专题:计算题;三角函数的求值分析:根据同角三角函数的平方关系,可得cos2=,结合二倍角的正弦公式和sin20得cos=,最后根据切化弦的思路,结合二倍角的正、余弦公式即可算出的值解答:解:,cos2=1sin2=sin2=2sincos0,cos=(舍正)因此,=3故答案为:3点评:本题给出角的正弦之值,

6、求一半的正切,着重考查了同角三角函数的基本关系、二倍角的正余弦公式和半角的三角函数求法等知识,属于中档题15. 已知集合,则集合 . 参考答案:16. 在区间上随机取一个数,则的值介于0到的概率为 .参考答案:略17. 设函数,若这两个函数的图象有3个交点,则_.参考答案:【知识点】函数与方程B9【答案解析】a=1 作出的图像,根据图像找出只有在a=1处有三个交点,故答案为a=1.【思路点拨】作出图像观察交点个数确定a 的值。三、 解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18. 如图,三棱柱ABC-A1B1C1的侧面BCC1B1是平行四边形,BC1C1C,平面A

7、1C1CA平面BCC1B1,且E,F分别是BC,A1B1的中点(1)求证:BC1A1C;(2)求证:EF平面A1C1CA;(3)在线段AB上是否存在点P,使得BC1平面EFP?若存在,求出的值;若不存在,请说明理由参考答案:(1)见解析;(2)见解析;(3)存在,(1),又平面平面,且平面平面,平面又平面,(2)取中点,连,连在中,分别是,中点,且在平行四边形中,是的中点,且,且四边形是平行四边形又平面,平面,平面(3)在线段上存在点,使得平面取的中点,连,连平面,平面,平面,在中,分别是,中点,又由(2)知,由得平面故当点是线段的中点时,平面此时,19. 设函数(、为实常数),已知不等式对一

8、切恒成立.定义数列:(I)求、的值;(II)求证:参考答案:解:(I)由得故(2分)(II)当时,即 (5分)当时, (8分)又 从而 (10分)当时, (11分)又当时, 成立所以时, (12分)20. (本小题满分14分)已知函数。(1)若函数在区间(其中)上存在极值,求实数的取值范围;(2)如果当时,不等式恒成立,求实数的取值范围。(3)证明:。参考答案:(1)因为,则,(1分)当时,;当时,.所以在上单调递增;在上单调递减,所以函数在处取得极大值.(2分)因为函数在区间上存在极值,所以 解得(4分)(2)不等式即为 记,所以.(5分)令,则,在上单调递增,从而,故在上也单调递增,所以所

9、以.(9分)(3)由上述知恒成立,即, 令,则, ,(11分)叠加得则,所以(14分)21. (本小题满分14分)在中,内角的对应边分别为,已知(1)求的值;(2)若,求面积的最大值参考答案:【知识点】解三角形C8【答案解析】(1)(2)(1)由正弦定理得到: 因为在三角形中,所以所以 因为 ,所以即 所以即。 (2)由余弦定理得到:,所以 所以即当且仅当即时“=”成立 而,所以面积的最大值为。【思路点拨】根据正弦定理余弦定理求出边角,利用均值不等式求出最值。22. 选修41: 几何证明选讲如图,直线AB经过O上一点C,且OA=OB,CA=CB,O交直线OB于E、D.()求证:直线AB是O的切线;()若O的半径为3,求OA的长.参考答案:()如图,连接OC, OA=OB,CA=CB, OCAB, AB是O的切线 () ED是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论