版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、用列举法求概率(第二课时)复习回顾: 一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含在其中的m种结果,那么事件A发生的概率为:求概率的步骤:(1)列举出一次试验中的所有结果(n个);(2)找出其中事件A发生的结果(m个);(3)运用公式求事件A的概率:引例1:掷两枚硬币,求下列事件的概率:(1)两枚硬币全部正面朝上;(2)两枚硬币全部反面朝上;(3)一枚硬币正面朝上,一枚硬币反面朝上;“掷两枚硬币”共有几种结果?正正正反反正反反为了不重不漏地列出所有这些结果,你有什么好办法么?掷两枚硬币,不妨设其中一枚为A,另一枚为B,用列表法列举所有可能出现的结果:BA还
2、能用其它方法列举所有结果吗?正反正反正正正反反正反反引例2掷一枚质地均匀的骰子有几种可能?思考:掷两枚质地均匀的骰子有几种可能? 同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同(2)两个骰子的点数之和是9(3)至少有一个骰子的点数为2用列举法求概率同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同(2)两个骰子的点数之和是9(3)至少有一个骰子的点数为2123456123456解:由列表得,同时掷两个骰子,可能出现的结果有36个,它们出现的可能性相等。(1)满足两个骰子的点数相同(记为事件A)的结果有6个,则P(A)= =(2)满足两个骰子的点数之和
3、是9(记为事件B)的结果有4个,则P(B)= =(3)满足至少有一个骰子的点数为2(记为事件C)的结果有11个,则P(C)= 第一个第二个(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)用列举法求概率归纳“列表法”的意义: 当试验涉及两个因素(例如两个转盘)并且可能出现的结果数目较多时,
4、为不重不漏地列出所有的结果,通常采用“列表法”。思考 “同时掷两个质地相同的骰子”与 “把一个骰子掷两次”,所得到的结果有变化吗?“同时掷两个质地相同的骰子”两个骰子各出现的点数为16点“把一个骰子掷两次”两次骰子各出现的点数仍为16点归纳 “两个相同的随机事件同时发生”与 “一个随机事件先后两次发生”的结果是一样的。随机事件“同时”与“先后”的关系:练习一(课本137页) 在6张卡片上分别写有16的整数,随机地抽取一张后放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少? 1234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2
5、,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)第一张第二张解:由列表得,两次抽取卡片后,可能出现的结果有36个,它们出现的可能性相等. 满足第一次取出的数字能够整除第二次取出的数字(记为事件A)的结果有14个,则P(A)= =用列举法求概率练习2:(课本第138页第3题):一个袋子中装有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个球然后放回,再随机地摸出一个球,请你计算下列事件的概率概率;(1):两次取的小球的标号相同;(2):两次取的小球的标号的和等于4.这节课我们学习了哪些内容?通过学习你有什么收获? 用列举法求概率基础达标同步学习
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教部编版《道德与法治》二年级上册第1课《假期有收获》精美课件(第2课时)
- 2023年注册会计师之注会公司战略与风险管理全真模拟考试试卷A卷含答案
- 2024年K线技术分析与实战演练
- 通信行业:5G+工业互联网生态合作白皮书
- 制造业生产管理:Excel2024版高效培训教程
- 2024年LPCVD技术在新能源领域的应用
- 2023年计算机二级题库完整
- 海南省安全员C证考试题库及答案
- 江西省宜春市2025届高三10月阶段性考试语文试卷及答案
- (新版)临床寄生虫检验复习考试题库(含答案)
- 建筑工程--XZ公司16年内部资料:安装公司施工工艺标准合集参考范本
- 校园及周边高危人员排查情况表(共2页)
- 建筑风水学PPT
- 化学除磷加药量及污泥量计算书
- 有关消防复查的申请书
- 苏州市存量房买卖合同
- 文艺清新PPT模板 (148)
- 安徽省建设工程造价咨询服务项目及收费标准
- 建筑工程关键施工技术工艺及工程项目实施的重点难点和解决方案
- 泌尿系统梗阻病人的护理.ppt
- (完整版)初中数学中考考试大纲
评论
0/150
提交评论