直线与圆的位置关系切线长定理 完整版课件_第1页
直线与圆的位置关系切线长定理 完整版课件_第2页
直线与圆的位置关系切线长定理 完整版课件_第3页
直线与圆的位置关系切线长定理 完整版课件_第4页
直线与圆的位置关系切线长定理 完整版课件_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、直线与圆的位置关系切线长定理问题1、经过平面上一个已知点,作已知圆的切线会有怎样的情形?OOOP PPA问题2、经过圆外一点P,如何作已知O的切线? O。ABP思考:假设切线PA已作出,A为切点,则OAP=90,连接OP,可知A在怎样的圆上?在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长OPAB切线与切线长的区别与联系:(1)切线是一条与圆相切的直线;(2)切线长是指切线上某一点与切点间的线段的长。 若从O外的一点引两条切线PA,PB,切点分别是A、B,连结OA、OB、OP,你能发现什么结论?并证明你所发现的结论。APO。BPA = PBOPA=OPB证明:PA,PB与

2、O相切,点A,B是切点 OAPA,OBPB 即OAP=OBP=90 OA=OB,OP=OP RtAOPRtBOP(HL) PA = PB OPA=OPB试用文字语言叙述你所发现的结论PA、PB分别切O于A、BPA = PBOPA=OPB 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。 切线长定理APO。B几何语言:反思:切线长定理为证明线段相等、角相等提 供了新的方法APO。BM 若连结两切点A、B,AB交OP于点M.你又能得出什么新的结论?并给出证明.OP垂直平分AB证明:PA,PB是O的切线,点A,B是切点 PA = PB OPA=OPB PAB是等腰三

3、角形,PM为顶角的平分线 OP垂直平分AB例.PA、PB是O的两条切线,A、B为切点,直线OP交于O于点D、E,交AB于C。BAPOCED(1)写出图中所有的垂直关系OAPA,OB PB,AB OP(3)写出图中所有的全等三角形AOP BOP, AOC BOC, ACP BCP(4)写出图中所有的等腰三角形ABP AOB(5)若PA=4、PD=2,求半径OA(2)写出图中与OAC相等的角OAC=OBC=APC=BPCoooo外接圆圆心:三角形三边垂直平分线的交点。外接圆的半径:交点到三角形任意一个顶点的距离。三角形外接圆三角形内切圆o内切圆圆心:三角形三个内角平分线的交点。内切圆的半径:交点到

4、三角形任意一边的垂直距离。AABBCC 例.如图所示PA、PB分别切圆O于A、B,并与圆O的切线分别相交于C、D,已知PA=7cm,(1)求PCD的周长(2) 如果P=46,求COD的度数C OPBDAE过O外一点作O的切线OPABO例1 ABC的内切圆O与BC、CA、AB分别相切于 点D、E、F,且AB=9cm,BC=14cm,CA=13cm, 求AF、BD、CE的长.解:设AF=x(cm), BD=y(cm),CEz(cm) AF=4(cm), BD=5(cm), CE=9(cm). O与ABC的三边都相切AFAE,BDBF,CECD则有xy9yz14xz13解得x4y5z9基础题:1.既有外接圆,又内切圆的平行四边形是_.2.直角三角形的外接圆半径为5cm,内切圆半径为1cm, 则此三角形的周长是_.3.O是边长为2cm的正方形ABCD的内切圆,EF切O 于P点,交AB、BC于E、F,则BEF的周长是_.EFHG正方形22cm2cm1.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。 小 结:APO。BECDPA、PB分别切O于A、BPA = PB ,OPA=OPBOP垂直平分AB切线长定理为证明线段相等,角相等,弧相等,垂直关系提供了理论依据。必须掌握并能灵活应用。小结:1.一个三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论