高中数学必修三角函数知识点归纳总结经典_第1页
高中数学必修三角函数知识点归纳总结经典_第2页
高中数学必修三角函数知识点归纳总结经典_第3页
高中数学必修三角函数知识点归纳总结经典_第4页
高中数学必修三角函数知识点归纳总结经典_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、三角函数知识网络】1、一、任意角的概念与弧度制将沿x轴正向的射线,围绕原点旋转所形成的图形称作角逆时针旋转为正角,顺时针旋转为负角,不旋转为零角同终边的角可表示为|a二卩+k360(kgZ)2、x轴上角:k.180(kgZ)3、y轴上角:第一象限角:90。+k180。(kgZ)(x|0+k360a90。+k360(kgZ)第二象限角:+k360。vav180+k360。(gZ)第二象限角:第三象限角:lx1180+k360。a270+k360(kgZ)第三象限角:第四象限角:270。+k360。a360+k360(kgZ)第四象限角:4、区分第一象限角、锐角以及小于90。的角第一象限角:x|0

2、+k360a90+k360(kgZ)锐角:x|0a90小于90的角:a90。a兀,a兀,+k兀,a兀,+kK+JCR422兀+2k兀ak+2k兀2TOC o 1-5 h z,八兀兀k=0,a0,y0sin0,cos0,tan0,第二象限:.x0sin0,cos0,tan0,第三象限:.x0,y0sin0,cos0,第四象限:.x0,y0sin0,tan0,sinatana4、三角函数线设任意角a的顶点在原点O,始边与x轴非负半轴重合,终边与单位圆相交与P(x,y),过P作x轴的垂线,垂足为M;过点A(1,0)作单位圆的切线,它与角a的终边或其反向延长线交于点cosa当角a的终边不在坐标轴上时,

3、有向线段OM二x,MP二ycosa当角a的终边不在坐标轴上时,有向线段OM二x,MP二y,于是有yysina=y=MP,cosar1=7=T=x=OMtanayMP1OMATOA我们就分别称有向线段MP,OM,AT为正弦线、余弦线、正切线。5、同角三角函数基本关系式sin2a+cos2a=1sina4tana=ntanacota=1cosa(sina+cosa)2=1+2sinacosa(sina一cosa)2=1一2sinacosa(sina+cosa,sinacosa,sinacosa,三式之间可以互相表示)6、诱导公式n兀+a口诀:奇变偶不变,符号看象限(所谓奇偶指的是2中整数n的奇偶性

4、,把a看作锐角)sin(+a)(sin(+a)(T)2sma,“为偶数(一1)2cosa,n为奇数znKcos(2n(1)2cosa,n为偶数+a)=0,e0)的性质:,2兀1e振幅:A:周期:T=:频率:f=:相位:ex+P:初相:9。eT2兀3、周期函数:一般地,对于函数f(x),如果存在一个非零常数T,使得定义域内的每一个x值,都满足f(x+T)=f(x),那么函数f(x)就叫做周期函数,T叫做该函数的周期.KkK+9K2kK-9,对称中/心:ex+9=k,得x=e4、y=Asin(ex+9)kK-9,对称中/心:ex+9=k,得x=e(,0)(keZ);ey=Acos(ex+9)对称轴

5、:令ex+9K对称中心:ex+9=kK+2周期公式:KKkK+9kK+9,得x=2,(2,0)(keZ);CDCD函数y=Asin(ex+9)及y=Acos(ex+9)的周期T=(A、3、9为常数,且A糾壬0).函数y=Atan函数y=Atan(ex+e)的周期tK(A、3、9为常数,且A壬0).5、三角函数的图像与性质表格性质函数、.y=sinxy=cosxy=tanx图像定义域RRfK12J值域-1,1-1,1R最值当x=2k兀+中(kwZ)时,y=1;max当x=2k兀一希(keZ)时,y=-1min当x=2k兀(keZ)时,y=1;当x=2k兀+兀max(keZ)时,y=-1min既无

6、最大值也无最小值周期性2兀2兀兀奇偶性奇函数偶函数奇函数单调性在(在(+2k兀,一+2k兀_22_keZ)上是增函数;兀“3兀+2k兀,+2k兀_22_keZ)上是减函数.在-兀+2k兀,2k兀(keZ)上是增函数;在bk兀,2k兀+兀(keZ)上是减函数.(1兀7兀)4在k兀,k兀+122丿(keZ)上是增函数.对称性对称中心(加,0)(keZ)对称轴x=k兀+(keZ)对称中心fk兀+更,0(keZ)I2丿对称轴x=k兀(keZ)fk兀、对称中心,0(keZ)k2丿无对称轴6.五点法作的简图,设,取0、来求相应的值以及对应的y值再描点作图。y二Asin(x+甲)的的图像函数的变换:(1)函

7、数的平移变换将图像沿轴向左(右)平移个单位(左加右减)将图像沿轴向上(下)平移个单位(上加下减)(2)函数的伸缩变换:将图像纵坐标不变,横坐标缩到原来的倍(缩短,伸长)22将图像横坐标不变,纵坐标伸长到原来的A倍(伸长,缩短)(3)函数的对称变换:)将图像绕轴翻折180(整体翻折)(对三角函数来说:图像关于轴对称)将图像绕轴翻折180(整体翻折)(对三角函数来说:图像关于轴对称)将图像在轴右侧保留,并把右侧图像绕轴翻折到左侧(偶函数局部翻折)保留在轴上方图像,轴下方图像绕轴翻折上去(局部翻动)四、三角恒等变换1.两角和与差的正弦、余弦、正切公式:sin(a+P)=sinacosP+sinaco

8、sPsin(a-P)=sinacosP-sinacosPcosa+P)=cosacosP-sinasinPcosQ-P)=cosacosP+sinasinP(5)tan(a+(5)tan(a+P)=tana+tanP1-tanatanPtana+tanP=tan(a+P)(1-tanatanP)tan(a-P)=tanatanPntana一tanP=tan(a-P)(l+tanatanP)1+tanatanPasina+bcosa二W+b2sin(a+p)(其中,辅助角9所在象限由点(a,b)所在的象限bab该法也叫合一变形).决定,sin9=,cos9=,tan9=一该法也叫合一变形).a2

9、+b2a2+b2a(8)1+tan9(8)1+tan91-tan9兀=叫+9)1-tan91+tan9兀=tan(4-9)二倍角公式(1)(2)(3)降幂公式:(2a2)1-cosa2)1-cosa=2sin2-a(1)1+cosa=2cos2-23)(4)13)(4)1=sin2a+cos2a1土sina=(sin土cos)222aasina=2sincos一229半角公式(符号的选择由一所在的象限确定)2(1)(2)(3)万能公式:1)sina=2tan-21)sina=2tan-2-a1+tan2-22)cosa=1-tan21a1+tan2一3)2tan-tana=23)1-tan2a

10、27.三角变换:三角变换是运算化简过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算、化简的方法技能。(1)角的变换:角之间的和差、倍半、互补、互余等关系对角变换,还可作添加、删除角的恒等变形(2)函数名称变换:三角变形中常常需要变函数名称为同名函数。采用公式:其中,比如=:12+=:12+(i:3)2(1v12+.;3)2sinx+、打V12+G/3)2cosx)TOC o 1-5 h z=2(丄sinx+3cosx)=2(sinxcos+cosxsin)=2sin(x+)22333(3)注意“凑角”运用:a=(a+卩)卩,a=p-(p-a),a=2(+p)-

11、(p-a)例如:已知a、卩w(r,兀),sin(a(3)注意“凑角”运用:a=(a+卩)卩,a=p-(p-a),454134(4)常数代换:在三角函数运算、求值、证明中有时候需将常数转化为三角函数,特别是常数“1”可转化为“sin2a+cos2a”(5)幂的变换:对次数较高的三角函数式一般采用降幂处理,有时需要升幂例如:常用升幂化为有理式。(6)公式变形:三角公式是变换的依据,应熟练掌握三角公式的顺用、逆用及变形。(7)结构变化:在三角变换中常常对条件、结论的结构进行调整,或重新分组,或移项,或变乘为除,或求差等等。在形式上有时需要和差与积的互化、分解因式、配方等。(8)消元法:如果所要证明的式子中不含已知条件中的某些变量,可用此法(9)思路变换:如果一种思路无法再走下去,试着改变自己的思路,通过分析比较去选择更合适、简捷的方法去解题目。(10)利用方程思想解三角函数。如对于以下三个式子:,已知其中一个式子的值,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论