版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,则( )A函数在上单调递增B函数在上单调递减C函数图像关于对称D函数图像关于对称2已
2、知x,则“”是“”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件3周易历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法我们用近代术语解释为:把阳爻“- ”当作数字“1”,把阴爻“-”当作数字“0”,则八卦所代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤0000震0011坎0102兑0113依此类推,则六十四卦中的“屯”卦,符号“ ”表示的十进制数是( )A18B17C16D154已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为( )A2B3C4D55已知
3、集合,则集合的非空子集个数是( )A2B3C7D86网络是一种先进的高频传输技术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精确到月)( )A2020年6月B2020年7月C2020年8月D2020年9月7点是单位圆上不同的三点,线段与线段交于圆内一点M,若,则的最小值为(
4、) ABCD8已知函数,若方程恰有两个不同实根,则正数m的取值范围为( )ABCD9的展开式中,项的系数为( )A23B17C20D6310明代数学家程大位(15331606年),有感于当时筹算方法的不便,用其毕生心血写出算法统宗,可谓集成计算的鼻祖如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题执行该程序框图,若输出的的值为,则输入的的值为( )ABCD11已知是虚数单位,若,则实数( )A或B-1或1C1D12已知函数,则函数的零点所在区间为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若,则=_, = _.14设复数满足,则_.15已知平面向量,满足|1,|
5、2,的夹角等于,且()()0,则|的取值范围是_16设等差数列的前项和为,若,则数列的公差_,通项公式_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在三棱柱中, 平面ABC.(1)证明:平面平面(2)求二面角的余弦值.18(12分)选修4-5:不等式选讲已知函数.(1)设,求不等式的解集;(2)已知,且的最小值等于,求实数的值.19(12分)已知椭圆,上顶点为,离心率为,直线交轴于点,交椭圆于,两点,直线,分别交轴于点,()求椭圆的方程;()求证:为定值20(12分)某早餐店对一款新口味的酸奶进行了一段时间试销,定价为元/瓶.酸奶在试销售期间足量供应,每
6、天的销售数据按照,分组,得到如下频率分布直方图,以不同销量的频率估计概率.从试销售期间任选三天,求其中至少有一天的酸奶销量大于瓶的概率;试销结束后,这款酸奶正式上市,厂家只提供整箱批发:大箱每箱瓶,批发成本元;小箱每箱瓶,批发成本元.由于酸奶保质期短,当天未卖出的只能作废.该早餐店以试销售期间的销量作为参考,决定每天仅批发一箱(计算时每个分组取中间值作为代表,比如销量为时看作销量为瓶).设早餐店批发一大箱时,当天这款酸奶的利润为随机变量,批发一小箱时,当天这款酸奶的利润为随机变量,求和的分布列和数学期望;以利润作为决策依据,该早餐店应每天批发一大箱还是一小箱?注:销售额=销量定价;利润=销售额
7、批发成本.21(12分)已知分别是内角的对边,满足(1)求内角的大小(2)已知,设点是外一点,且,求平面四边形面积的最大值.22(10分)如图,在四棱锥中,侧棱底面,是棱中点.(1)已知点在棱上,且平面平面,试确定点的位置并说明理由;(2)设点是线段上的动点,当点在何处时,直线与平面所成角最大?并求最大角的正弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】依题意可得,即函数图像关于对称,再求出函数的导函数,即可判断函数的单调性;【详解】解:由,所以函数图像关于对称,又,在上不单调.故正确的只有C,故选:C【点睛】本
8、题考查函数的对称性的判定,利用导数判断函数的单调性,属于基础题.2D【解析】,不能得到, 成立也不能推出,即可得到答案.【详解】因为x,当时,不妨取,故时,不成立,当时,不妨取,则不成立,综上可知,“”是“”的既不充分也不必要条件,故选:D【点睛】本题主要考查了充分条件,必要条件的判定,属于容易题.3B【解析】由题意可知“屯”卦符号“”表示二进制数字010001,将其转化为十进制数即可.【详解】由题意类推,可知六十四卦中的“屯”卦符号“”表示二进制数字010001,转化为十进制数的计算为120+124=1故选:B【点睛】本题主要考查数制是转化,新定义知识的应用等,意在考查学生的转化能力和计算求
9、解能力.4D【解析】试题分析:抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.5C【解析】先确定集合中元素,可得非空子集个数【详解】由题意,共3个元素,其子集个数为,非空子集有7个故选:C【点睛】本题考查集合的概念,考查子集的概念,含有个元素的集合其子集个数为,非空子集有
10、个6C【解析】根据图形,计算出,然后解不等式即可.【详解】解:,点在直线上,令因为横轴1代表2019年8月,所以横轴13代表2020年8月,故选:C【点睛】考查如何确定线性回归直线中的系数以及线性回归方程的实际应用,基础题.7D【解析】由题意得,再利用基本不等式即可求解【详解】将平方得,(当且仅当时等号成立),的最小值为,故选:D【点睛】本题主要考查平面向量数量积的应用,考查基本不等式的应用,属于中档题8D【解析】当时,函数周期为,画出函数图像,如图所示,方程两个不同实根,即函数和有图像两个交点,计算,根据图像得到答案.【详解】当时,故函数周期为,画出函数图像,如图所示:方程,即,即函数和有两
11、个交点.,故,.根据图像知:.故选:.【点睛】本题考查了函数的零点问题,确定函数周期画出函数图像是解题的关键.9B【解析】根据二项式展开式的通项公式,结合乘法分配律,求得的系数.【详解】的展开式的通项公式为.则出,则出,该项为:;出,则出,该项为:;出,则出,该项为:;综上所述:合并后的项的系数为17.故选:B【点睛】本小题考查二项式定理及展开式系数的求解方法等基础知识,考查理解能力,计算能力,分类讨论和应用意识.10C【解析】根据程序框图依次计算得到答案.【详解】,;,;,;,;,此时不满足,跳出循环,输出结果为,由题意,得故选:【点睛】本题考查了程序框图的计算,意在考查学生的理解能力和计算
12、能力.11B【解析】由题意得,然后求解即可【详解】,.又,.【点睛】本题考查复数的运算,属于基础题12A【解析】首先求得时,的取值范围.然后求得时,的单调性和零点,令,根据“时,的取值范围”得到,利用零点存在性定理,求得函数的零点所在区间.【详解】当时,.当时,为增函数,且,则是唯一零点.由于“当时,.”,所以令,得,因为,所以函数的零点所在区间为.故选:A【点睛】本小题主要考查分段函数的性质,考查符合函数零点,考查零点存在性定理,考查函数的单调性,考查化归与转化的数学思想方法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13128 21 【解析】令,求得的值.利用展开式的通项
13、公式,求得的值.【详解】令,得.展开式的通项公式为,当时,为,即.【点睛】本小题主要考查二项式展开式的通项公式,考查赋值法求解二项式系数有关问题,属于基础题.14.【解析】利用复数的运算法则首先可得出,再根据共轭复数的概念可得结果.【详解】复数满足,故而可得,故答案为.【点睛】本题考查了复数的运算法则,共轭复数的概念,属于基础题15【解析】计算得到|,|cos1,解得cos,根据三角函数的有界性计算范围得到答案.【详解】由()()0 可得 ()|cos12cos|cos1,为与的夹角再由 21+4+212cos7 可得|,|cos1,解得cos0,1cos1,1,即|+10,解得 |,故答案为
14、【点睛】本题考查了向量模的范围,意在考查学生的计算能力,利用三角函数的有界性是解题的关键.162 【解析】直接利用等差数列公式计算得到答案.【详解】,解得,故.故答案为:2;.【点睛】本题考查了等差数列的基本计算,意在考查学生的计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)证明见解析 (2)【解析】(1)证明平面即平面平面得证;(2)分别以所在直线为x轴,y轴.轴,建立如图所示的空间直角坐标系C-xyz,再利用向量方法求二面角的余弦值.【详解】(1)证明:因为平面ABC,所以 因为.所以.即 又.所以平面 因为平面.所以平面平面 (2)解:由题可得两两垂直,
15、所以分别以所在直线为x轴,y轴.轴,建立如图所示的空间直角坐标系C-xyz,则,所以 设平面的一个法向量为,由.得令,得 又平面,所以平面的一个法向量为. 所以二面角的余弦值为.【点睛】本题主要考查空间几何位置关系的证明,考查二面角的计算,意在考查学生对这些知识的理解掌握水平.18 (1) (2) 【解析】(1)把f(x)去绝对值写成分段函数的形式,分类讨论,分别求得解集,综合可得结论(2)把f(x)去绝对值写成分段函数,画出f(x)的图像,找出利用条件求得a的值【详解】(1)时,.当时,即为,解得.当时, ,解得.当时, ,解得.综上,的解集为.(2).,由的图象知,.【点睛】本题主要考查含
16、绝对值不等式的解法及含绝对值的函数的最值问题,体现了分类讨论的数学思想,属于中档题19();(),证明见解析【解析】()根据题意列出关于,的方程组,解出,的值,即可得到椭圆的方程;()设点,点,易求直线的方程为:,令得,同理可得,所以,联立直线与椭圆方程,利用韦达定理代入上式,化简即可得到【详解】()解:由题意可知:,解得,椭圆的方程为:;()证:设点,点,联立方程,消去得:,点,直线的方程为:,令得,同理可得,把式代入上式得:,为定值【点睛】本题主要考查直线与椭圆的位置关系、定值问题的求解;关键是能够通过直线与椭圆联立得到韦达定理的形式,利用韦达定理化简三角形面积得到定值;考查计算能力与推理
17、能力,属于中档题20;详见解析;应该批发一大箱.【解析】酸奶每天销量大于瓶的概率为,不大于瓶的概率为,设“试销售期间任选三天,其中至少有一天的酸奶销量大于瓶”为事件,则表示“这三天酸奶的销量都不大于瓶”.利用对立事件概率公式求解即可.若早餐店批发一大箱,批发成本为元,依题意,销量有,四种情况,分别求出相应概率,列出分布列,求出的数学期望,若早餐店批发一小箱,批发成本为元,依题意,销量有,两种情况,分别求出相应概率,由此求出的分布列和数学期望;根据中的计算结果,从而早餐应该批发一大箱.【详解】解:根据图中数据,酸奶每天销量大于瓶的概率为,不大于瓶的概率为.设“试销售期间任选三天,其中至少有一天的
18、酸奶销量大于瓶”为事件,则表示“这三天酸奶的销量都不大于瓶”.所以.若早餐店批发一大箱,批发成本为元,依题意,销量有,四种情况.当销量为瓶时,利润为元;当销量为瓶时,利润为元;当销量为瓶时,利润为元;当销量为瓶时,利润为元.随机变量的分布列为所以(元)若早餐店批发一小箱,批发成本为元,依题意,销量有,两种情况.当销量为瓶时,利润为元;当销量为瓶时,利润为元.随机变量的分布列为所以(元).根据中的计算结果,所以早餐店应该批发一大箱.【点睛】本题考查概率,离散型随机变量的分布列、数学期望的求法,考查古典概型、对立事件概率计算公式等基础知识,属于中档题.21(1)(2)【解析】(1)首先利用诱导公式及两角和的余弦公式得到,再由同角三角三角的基本关系得到,即可求出角;(2)由(1)知,是正三角形,设,由余弦定理可得:,则,得到,再利用辅助角公式化简,最后由正弦函数的性质求得最大值;【详解】解:(1)由,;(2)由(1)知,是正三角形,设,由余弦定理得:,所以当时有最大值【点睛】本题考查同角三角函数的基本关系,三角恒等变换公式的应用,三角形面积公式的应用,以及正弦函数的性质,属于中档题.22(1)为中点,理由见解析;(2)当点在线段靠近的三等分点时,直线与平面所成角最大,最大角的正弦值.【解析】(1)为中点,可利用中位线与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024专业电脑配件批发销售协议版B版
- 2024年地方电力网络升级改造工程承包合同书版
- 2024商业采购协议范本大全版B版
- 2024专业版劳动协议终止通知函范例版B版
- 江南大学《分子生物学》2022-2023学年第一学期期末试卷
- 江南大学《材料科学与工程基础》2021-2022学年第一学期期末试卷
- 国际残疾人日帮助残疾人关爱弱势群体课件
- 二零二四年度技术开发合作合同标的和义务3篇
- 暨南大学《解析几何》2022-2023学年第一学期期末试卷
- 暨南大学《房地产金融》2021-2022学年第一学期期末试卷
- GB/T 44770-2024智能火电厂技术要求
- 2024年食品安全生产经营大比武理论考试题库-下(多选、判断题)
- 人力资源许可证制度(服务流程、服务协议、收费标准、信息发布审查和投诉处理)
- 2024年舟山继续教育公需课考试题库
- 一年级拼音默写表
- 家长会课件:七年级家长会班主任优质课件
- 明亚保险经纪人考试题库答案
- DL-T 5369-2021 电力建设工程工程量清单计算规范 火力发电工程
- 《思想道德与法治》 课件 第四章 明确价值要求 践行价值准则
- 部编版五年级语文上册习作《______即景》PPT课件
- 企业经营三类医疗器械组织机构与部门设置说明;
评论
0/150
提交评论