版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡
2、一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,若,则实数的取值范围为( )ABCD2某学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为的样本,其频率分布直方图如图所示,其中支出在(单位:元)的同学有34人,则的值为( )A100B1000C90D903已知集合,则为( )A0,2)B(2,3C2,3D(0,24在棱长为a的正方体中,E、F、M分别是AB、AD、的中点,又P、Q分别在线段、上,且,设平面平面,则下列结论中不成立的是( )A平面BC当时,平面D当m变化时,直线l的位置不变5函数的一个单调递增区间
3、是( )ABCD6已知正项等比数列的前项和为,则的最小值为( )ABCD7已知集合,ByN|yx1,xA,则AB( )A1,0,1,2,3B1,0,1,2C0,1,2Dx1x28已知非零向量,满足,则与的夹角为( )ABCD9如果,那么下列不等式成立的是( )ABCD10数列满足:,则数列前项的和为ABCD11函数f(x)的图象大致为()ABCD12已知正四面体外接球的体积为,则这个四面体的表面积为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13从集合中随机取一个元素,记为,从集合中随机取一个元素,记为,则的概率为_14已知点为双曲线的右焦点,两点在双曲线上,且关于原点对称,
4、若,设,且,则该双曲线的焦距的取值范围是_.15某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1 000名学生的成绩,并根据这1 000名学生的成绩画出样本的频率分布直方图(如图),则成绩在250,400)内的学生共有_人16九章算术中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑中,平面,且,过点分别作于点,于点,连接,则三棱锥的体积的最大值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,且(1)请给出的一组值,使得成立;(2)证明不等式恒成立18(12分)已知函数,(1)当时,求不等式的解集; (2)若函
5、数的图象与轴恰好围成一个直角三角形,求的值19(12分)已知函数.()求的值;()若,且,求的值.20(12分)在直角坐标系xOy中,直线的参数方程为(t为参数,)以坐标原点 为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为(l)求直线的普通方程和曲线C的直角坐标方程:(2)若直线与曲线C相交于A,B两点,且求直线 的方程21(12分)在中,内角的对边分别是,已知.(1)求角的值;(2)若,求的面积22(10分)已知函数.(1)求函数的最小正周期以及单调递增区间;(2)已知,若,求的面积.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一
6、项是符合题目要求的。1A【解析】解一元二次不等式化简集合的表示,求解函数的定义域化简集合的表示,根据可以得到集合、之间的关系,结合数轴进行求解即可.【详解】,.因为,所以有,因此有.故选:A【点睛】本题考查了已知集合运算的结果求参数取值范围问题,考查了解一元二次不等式,考查了函数的定义域,考查了数学运算能力.2A【解析】利用频率分布直方图得到支出在的同学的频率,再结合支出在(单位:元)的同学有34人,即得解【详解】由题意,支出在(单位:元)的同学有34人由频率分布直方图可知,支出在的同学的频率为故选:A【点睛】本题考查了频率分布直方图的应用,考查了学生概念理解,数据处理,数学运算的能力,属于基
7、础题.3B【解析】先求出,得到,再结合集合交集的运算,即可求解.【详解】由题意,集合,所以,则,所以.故选:B.【点睛】本题主要考查了集合的混合运算,其中解答中熟记集合的交集、补集的定义及运算是解答的关键,着重考查了计算能力,属于基础题.4C【解析】根据线面平行与垂直的判定与性质逐个分析即可.【详解】因为,所以,因为E、F分别是AB、AD的中点,所以,所以,因为面面,所以.选项A、D显然成立;因为,平面,所以平面,因为平面,所以,所以B项成立;易知平面MEF,平面MPQ,而直线与不垂直,所以C项不成立.故选:C【点睛】本题考查直线与平面的位置关系.属于中档题.5D【解析】利用同角三角函数的基本
8、关系式、二倍角公式和辅助角公式化简表达式,再根据三角函数单调区间的求法,求得的单调区间,由此确定正确选项.【详解】因为,由单调递增,则(),解得(),当时,D选项正确.C选项是递减区间,A,B选项中有部分增区间部分减区间.故选:D【点睛】本小题考查三角函数的恒等变换,三角函数的图象与性质等基础知识;考查运算求解能力,推理论证能力,数形结合思想,应用意识.6D【解析】由,可求出等比数列的通项公式,进而可知当时,;当时,从而可知的最小值为,求解即可.【详解】设等比数列的公比为,则,由题意得,得,解得,得.当时,;当时,则的最小值为.故选:D.【点睛】本题考查等比数列的通项公式的求法,考查等比数列的
9、性质,考查学生的计算求解能力,属于中档题.7A【解析】解出集合A和B即可求得两个集合的并集.【详解】集合xZ|2x31,0,1,2,3,ByN|yx1,xA2,1,0,1,2,AB2,1,0,1,2,3故选:A【点睛】此题考查求集合的并集,关键在于准确求解不等式,根据描述法表示的集合,准确写出集合中的元素.8B【解析】由平面向量垂直的数量积关系化简,即可由平面向量数量积定义求得与的夹角.【详解】根据平面向量数量积的垂直关系可得,所以,即,由平面向量数量积定义可得,所以,而,即与的夹角为.故选:B【点睛】本题考查了平面向量数量积的运算,平面向量夹角的求法,属于基础题.9D【解析】利用函数的单调性
10、、不等式的基本性质即可得出.【详解】,.故选:D.【点睛】本小题主要考查利用函数的单调性比较大小,考查不等式的性质,属于基础题.10A【解析】分析:通过对anan+1=2anan+1变形可知,进而可知,利用裂项相消法求和即可详解:,又=5,即,数列前项的和为,故选A点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2) ; (3);(4) ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.11D【解析】根据函数为非偶函数可排除两个选项,再根据特殊值可区分剩余两个选项.【详解】因
11、为f(x)f(x)知f(x)的图象不关于y轴对称,排除选项B,C.又f(2)0.排除A,故选D.【点睛】本题主要考查了函数图象的对称性及特值法区分函数图象,属于中档题.12B【解析】设正四面体ABCD的外接球的半径R,将该正四面体放入一个正方体内,使得每条棱恰好为正方体的面对角线,根据正方体和正四面体的外接球为同一个球计算出正方体的棱长,从而得出正四面体的棱长,最后可求出正四面体的表面积【详解】将正四面体ABCD放在一个正方体内,设正方体的棱长为a,如图所示,设正四面体ABCD的外接球的半径为R,则,得因为正四面体ABCD的外接球和正方体的外接球是同一个球,则有, 而正四面体ABCD的每条棱长
12、均为正方体的面对角线长,所以,正四面体ABCD的棱长为,因此,这个正四面体的表面积为故选:B【点睛】本题考查球的内接多面体,解决这类问题就是找出合适的模型将球体的半径与几何体的一些几何量联系起来,考查计算能力,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13【解析】先求出随机抽取a,b的所有事件数,再求出满足的事件数,根据古典概型公式求出结果.【详解】解:从集合中随机取一个元素,记为,从集合中随机取一个元素,记为,则的事件数为9个,即为,其中满足的有,共有8个,故的概率为.【点睛】本题考查了古典概型的计算,解题的关键是准确列举出所有事件数.14【解析】设双曲线的左焦点为,连接,由
13、于.所以四边形为矩形,故,由双曲线定义可得,再求的值域即可.【详解】如图,设双曲线的左焦点为,连接,由于.所以四边形为矩形,故.在中,由双曲线的定义可得,.故答案为:【点睛】本题考查双曲线定义及其性质,涉及到求余弦型函数的值域,考查学生的运算能力,是一道中档题.15750【解析】因为0.001+0.001+0.004+a+0.005+0.00350=1,得a=0.006所以10000.004+0.006+0.00516【解析】由已知可得AEF、PEF均为直角三角形,且AF2,由基本不等式可得当AEEF2时,AEF的面积最大,然后由棱锥体积公式可求得体积最大值【详解】由PA平面ABC,得PABC
14、,又ABBC,且PAABA,BC平面PAB,则BCAE,又PBAE,则AE平面PBC,于是AEEF,且AEPC,结合条件AFPC,得PC平面AEF,AEF、PEF均为直角三角形,由已知得AF2,而SAEF(AE2+EF2)AF22,当且仅当AEEF=2时,取“”,此时AEF的面积最大,三棱锥PAEF的体积的最大值为:VPAEF故答案为【点睛】本题主要考查直线与平面垂直的判定,基本不等式的应用,同时考查了空间想象能力、计算能力和逻辑推理能力,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(答案不唯一)(2)证明见解析【解析】(1)找到一组符合条件的值即可;(2
15、)由可得,整理可得,两边同除可得,再由可得,两边同时加可得,即可得证.【详解】解析:(1)(答案不唯一)(2)证明:由题意可知,因为,所以.所以,即.因为,所以,因为,所以,所以.【点睛】考查不等式的证明,考查不等式的性质的应用.18(1) (2)【解析】(1)当时,由可得,(所以,解得,所以不等式的解集为 (2)由题可得,因为函数的图象与轴恰好围成一个直角三角形,所以,解得,当时,函数的图象与轴没有交点,不符合题意;当时,函数的图象与轴恰好围成一个直角三角形,符合题意综上,可得19();().【解析】()直接代入再由诱导公式计算可得;()先得到,再根据利用两角差的余弦公式计算可得【详解】解:
16、();()因为所以,由得,又因为,故,所以,所以.【点睛】本题考查了三角函数中的恒等变换应用,属于中档题20 (1)见解析(2) 【解析】(1)将消去参数t可得直线的普通方程,利用x=cos, 可将极坐标方程转为直角坐标方程(2)利用直线被圆截得的弦长公式计算可得答案【详解】(1)由消去参数t得(),由得曲线C的直角坐标方程为:(2)由得,圆心为(1,0),半径为2,圆心到直线的距离为,即,整理得,所以直线l的方程为:【点睛】本题考查参数方程,极坐标方程与直角坐标方程之间的互化,考查直线被圆截得的弦长公式的应用,考查分析能力与计算能力,属于基础题21(1);(2)【解析】(1)由已知条件和正弦定理进行边角互化得,再根据余弦定理可求得值.(2)由正弦定理得,代入得,运用三角形的面积公式可求得其值.【详解】(1)由及正弦定理得,即由余弦定理得,.(2)设外接圆的半径为,则由正弦定理得,.【点睛】本题考查运用三角形的正弦定理、余弦定理、三角形的面积公式,关键在于熟练地运用其公式,合理地选择进行边角互化,属于基础题.22(1)最小正周期为,单调递增区间为;(2).【解析】(1)利用三角恒等变换思想化
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 各种手术的备皮范围
- 医疗服务协议及第二季度医保督导问题反馈培训会培训记录
- 《光照与园林植物》课件
- 医疗设备推广方案
- 《呼吸纵膈泌尿》课件
- 数学学案:课堂导学基本逻辑联结词
- 临床药物治疗学药物
- 《实验设计初步》课件
- 《办公室健康指南》课件
- 西药学综合知识与技能题库及答案(2201-2400题)
- YY 0569-2005生物安全柜
- juniper防火墙培训(SRX系列)
- GB/T 13610-2020天然气的组成分析气相色谱法
- 心肌梗死后综合征
- 《彩虹》教案 省赛一等奖
- FLUENT6.3使用说明及例题
- 街道火灾事故检讨
- 最新班组安全管理安全生产标准化培训课件
- 《一粒种子成长过程》的课件
- 学好语文贵在三个“多”:多读、多背、多写-浅谈语文学法指导
- 助人为乐-主题班会(课件)
评论
0/150
提交评论