九年级提优练习_第1页
九年级提优练习_第2页
九年级提优练习_第3页
九年级提优练习_第4页
九年级提优练习_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 提 优 练 习(20141130)1.(2013内江)如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,SDEF:SABF=4:25,则DE:EC= 2.(2013乌鲁木齐)如图,ABGHCD,点H在BC上,AC与BD交于点G,AB=2,CD=3,则GH的长为3.(2013雅安)如图,DE是ABC的中位线,延长DE至F使EF=DE,连接CF,则SCEF:S四边形BCED的值为 。4(2014莱芜)已知二次函数y=ax2+bx+c的图象如图所示下列结论:abc0;2ab0;4a2b+c0;(a+c)2b2其中正确的个数有()A1B2C3D45(2014南宁)如图,已知二

2、次函数y=x2+2x,当1xa时,y随x的增大而增大,则实数a的取值范围是()Aa1 B.1a1 C a0 D1a6.(2013新疆)如图,RtABC中,ACB=90,ABC=60,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着ABA的方向运动,设E点的运动时间为t秒(0t6),连接DE,当BDE是直角三角形时,t的值为 7.(2013昆明)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N下列结论:APEAME;PM+PN=AC;PE2+PF2=

3、PO2;POFBNF;当PMNAMP时,点P是AB的中点其中正确的结论有()A5个B4个C3个8.(2013孝感)如图,在ABC中,AB=AC=a,BC=b(ab)在ABC内依次作CBD=A,DCE=CBD,EDF=DCE则EF等于 解答:9.(2013咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为 . 10.(2013恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC= 11.(2013绥化)如图,点A,B,C,D为O

4、上的四个点,AC平分BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A4B5C6D712.(2013苏州)如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P则点P的坐标为 13.(2013巴中)如图,在平行四边形ABCD中,过点A作AEBC,垂足为E,连接DE,F为线段DE上一点,且AFE=B(1)求证:ADFDEC;(2)若AB=8,AD=6,AF=4,求AE的长14(2014泸州)如图,四边形ABCD内接于O,AB是O的直径,AC和BD相交于点E,且DC2=CECA(

5、1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AFCD交CD的延长线于点F,若PB=OB,CD=,求DF的长15.(2013遵义)如图,在RtABC中,C=90,AC=4cm,BC=3cm动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0t2.5)(1)当t为何值时,以A,P,M为顶点的三角形与ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由16. 【无锡崇安区2014届九年级上

6、】如图,AB是O的直径,AB4,过点B作O的切线,C是切线上一点,且BC2,P是线段OA上一动点,连结PC交O于点D,过点P作PC的垂线,交切线BC于点E,交O于点F,连结DF交AB于点G(1)当P是OA的中点时,求PE的长;(2)若PDFE,求PDF的面积17. (2014东营)如图,直线y=2x+2与x轴交于点A,与y轴交于点B,把AOB沿y轴翻折,点A落到点C,过点B的抛物线y=x2+bx+c与直线BC交于点D(3,4)(1)求直线BD和抛物线的解析式;(2)在第一象限内的抛物线上,是否存在疑点M,作MN垂直于x轴,垂足为点N,使得以M、O、N为顶点的三角形与BOC相似?若存在,求出点M

7、的坐标;若不存在,请说明理由;(3)在直线BD上方的抛物线上有一动点P,过点P作PH垂直于x轴,交直线BD于点H,当四边形BOHP是平行四边形时,试求动点P的坐标考点:相似形综合题分析:(1)作AHBC于H,根据勾股定理就可以求出AH,由三角形的面积公式就可以求出其值;(2)如图1,当0 x1.5时,由三角形的面积公式就可以表示出y与x之间的函数关系式,如图2,当1.5x3时,重叠部分的面积为梯形DMNE的面积,由梯形的面积公式就可以求出其关系式;(3)如图4,根据(2)的结论可以求出y的最大值从而求出x的值,作FODE于O,连接MO,ME,求得DME=90,就可以求出O的直径,由圆的面积公式

8、就可以求出其值解答:解:(1)如图3,作AHBC于H,AHB=90ABC是等边三角形,AB=BC=AC=3AHB=90,BH=BC=在RtABC中,由勾股定理,得AH=SABC=;(2)如图1,当0 x1.5时,y=SADE作AGDE于G,AGD=90,DAG=30,DG=x,AG=x,y=x2,a=0,开口向上,在对称轴的右侧y随x的增大而增大,x=1.5时,y最大=,如图2,当1.5x3时,作MGDE于G,AD=x,BD=DM=3x,DG=(3x),MF=MN=2x3,MG=(3x),y=,=;(3),如图4,y=;y=(x24x),y=(x2)2+,a=0,开口向下,x=2时,y最大=,

9、y最大时,x=2,DE=2,BD=DM=1作FODE于O,连接MO,MEDO=OE=1,DM=DOMDO=60,MDO是等边三角形,DMO=DOM=60,MO=DO=1MO=OE,MOE=120,OME=30,DME=90,DE是直径,SO=12=考点:二次函数综合题分析:(1)由直线y=2x+2可以求出A,B的坐标,由待定系数法就可以求出抛物线的解析式和直线BD的解析式;(2)如图1,2,由(1)的解析式设M(a,a2+a+2),当BOCMON或BOCONM时,由相似三角形的性质就可以求出结论;(3)设P(b,b2+b+2),H(b,2b+2)由平行四边形的性质建立方程求出b的值就可以求出结

10、论解答:解:(1)y=2x+2,当x=0时,y=2,B(0,2)当y=0时,x=1,A(1,0)抛物线y=x2+bx+c过点B(0,2),D(3,4),解得:,y=x2+x+2;设直线BD的解析式为y=kx+b,由题意,得,解得:,直线BD的解析式为:y=2x+2;(2)存在如图1,设M(a,a2+a+2)MN垂直于x轴,MN=a2+a+2,ON=ay=2x+2,y=0时,x=1,C(1,0),OC=1B(0,2),OB=2当BOCMON时,解得:a1=1,a2=2M(1,2)或(2,4);如图2,当BOCONM时,a=或,M(,)或(,)M在第一象限,符合条件的点M的坐标为(1,2),(,);(3)设P(b,b2+b+2),H(b,2b+2)如图3,四边形BOHP是平行四边形,BO=PH=2PH=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论