版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若,则函数在区间内单调递增的概率是( )A B C D2已知双曲线的一条渐近线的倾斜角为,且,则该双曲线的离心率为
2、( )ABC2D43已知函数的图象在点处的切线方程是,则( )A2B3C-2D-34已知抛物线y2= 4x的焦点为F,抛物线上任意一点P,且PQy轴交y轴于点Q,则 的最小值为( )ABClD15已知,则( )A5BC13D6已知等差数列中,则数列的前10项和( )A100B210C380D4007已知函数的图象与直线的相邻交点间的距离为,若定义,则函数,在区间内的图象是( )ABCD8已知复数z,则复数z的虚部为( )ABCiDi9已知向量满足,且与的夹角为,则( )ABCD10已知函数,若关于的方程有且只有一个实数根,则实数的取值范围是( )ABCD11给出下列三个命题:“”的否定;在中,
3、“”是“”的充要条件;将函数的图象向左平移个单位长度,得到函数的图象其中假命题的个数是( )A0B1C2D312若不等式对于一切恒成立,则的最小值是 ( )A0BCD二、填空题:本题共4小题,每小题5分,共20分。13的展开式中,常数项为_;系数最大的项是_.14已知四棱锥的底面ABCD是边长为2的正方形,且.若四棱锥P-ABCD的五个顶点在以4为半径的同一球面上,当PA最长时,则_;四棱锥P-ABCD的体积为_.15已知椭圆与双曲线有相同的焦点、,其中为左焦点.点为两曲线在第一象限的交点,、分别为曲线、的离心率,若是以为底边的等腰三角形,则的取值范围为_.16在的展开式中,项的系数是_(用数
4、字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四棱锥中,底面是直角梯形,是正三角形,是的中点.(1)证明:;(2)求直线与平面所成角的正弦值.18(12分)随着互联网金融的不断发展,很多互联网公司推出余额增值服务产品和活期资金管理服务产品,如蚂蚁金服旗下的“余额宝”,腾讯旗下的“财富通”,京东旗下“京东小金库”.为了调查广大市民理财产品的选择情况,随机抽取1200名使用理财产品的市民,按照使用理财产品的情况统计得到如下频数分布表:分组频数(单位:名)使用“余额宝”使用“财富通”使用“京东小金库”30使用其他理财产品50合计1200已知这1200名市
5、民中,使用“余额宝”的人比使用“财富通”的人多160名.(1)求频数分布表中,的值;(2)已知2018年“余额宝”的平均年化收益率为,“财富通”的平均年化收益率为.若在1200名使用理财产品的市民中,从使用“余额宝”和使用“财富通”的市民中按分组用分层抽样方法共抽取7人,然后从这7人中随机选取2人,假设这2人中每个人理财的资金有10000元,这2名市民2018年理财的利息总和为,求的分布列及数学期望.注:平均年化收益率,也就是我们所熟知的利息,理财产品“平均年化收益率为”即将100元钱存入某理财产品,一年可以获得3元利息.19(12分)如图,正方体的棱长为2,为棱的中点.(1)面出过点且与直线
6、垂直的平面,标出该平面与正方体各个面的交线(不必说明画法及理由);(2)求与该平面所成角的正弦值.20(12分)以直角坐标系的原点为极点,轴的非负半轴为极轴,且两坐标系取相同的长度单位.已知曲线的参数方程:(为参数),直线的极坐标方程:(1)求曲线的极坐标方程;(2)若直线与曲线交于、两点,求的最大值.21(12分)在平面直角坐标系中,有一个微型智能机器人(大小不计)只能沿着坐标轴的正方向或负方向行进,且每一步只能行进1个单位长度,例如:该机器人在点处时,下一步可行进到、这四个点中的任一位置记该机器人从坐标原点出发、行进步后落在轴上的不同走法的种数为(1)分别求、的值;(2)求的表达式22(1
7、0分)如图,在四棱锥中,底面为矩形,侧面底面,为棱的中点,为棱上任意一点,且不与点、点重合(1)求证:平面平面;(2)是否存在点使得平面与平面所成的角的余弦值为?若存在,求出点的位置;若不存在,请说明理由参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】函数在区间内单调递增, ,在恒成立, 在恒成立, , 函数在区间内单调递增的概率是,故选B.2A【解析】由倾斜角的余弦值,求出正切值,即的关系,求出双曲线的离心率.【详解】解:设双曲线的半个焦距为,由题意又,则,所以离心率,故选:A.【点睛】本题考查双曲线的简单几何性质,属
8、于基础题3B【解析】根据求出再根据也在直线上,求出b的值,即得解.【详解】因为,所以所以,又也在直线上,所以,解得所以.故选:B【点睛】本题主要考查导数的几何意义,意在考查学生对这些知识的理解掌握水平.4A【解析】设点,则点,利用向量数量积的坐标运算可得,利用二次函数的性质可得最值.【详解】解:设点,则点,当时,取最小值,最小值为.故选:A.【点睛】本题考查抛物线背景下的向量的坐标运算,考查学生的计算能力,是基础题.5C【解析】先化简复数,再求,最后求即可.【详解】解:,故选:C【点睛】考查复数的运算,是基础题.6B【解析】设公差为,由已知可得,进而求出的通项公式,即可求解.【详解】设公差为,
9、,.故选:B.【点睛】本题考查等差数列的基本量计算以及前项和,属于基础题.7A【解析】由题知,利用求出,再根据题给定义,化简求出的解析式,结合正弦函数和正切函数图象判断,即可得出答案.【详解】根据题意,的图象与直线的相邻交点间的距离为,所以 的周期为, 则, 所以,由正弦函数和正切函数图象可知正确.故选:A.【点睛】本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解.8B【解析】利用复数的运算法则、虚部的定义即可得出【详解】,则复数z的虚部为.故选:B.【点睛】本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.9A【解析】根据向量的运
10、算法则展开后利用数量积的性质即可.【详解】.故选:A.【点睛】本题主要考查数量积的运算,属于基础题.10B【解析】利用换元法设,则等价为有且只有一个实数根,分 三种情况进行讨论,结合函数的图象,求出的取值范围.【详解】解:设 ,则有且只有一个实数根.当 时,当 时, ,由即,解得,结合图象可知,此时当时,得 ,则 是唯一解,满足题意;当时,此时当时,此时函数有无数个零点,不符合题意;当 时,当 时,此时 最小值为 ,结合图象可知,要使得关于的方程有且只有一个实数根,此时 .综上所述: 或.故选:A.【点睛】本题考查了函数方程根的个数的应用.利用换元法,数形结合是解决本题的关键.11C【解析】结
11、合不等式、三角函数的性质,对三个命题逐个分析并判断其真假,即可选出答案.【详解】对于命题,因为,所以“”是真命题,故其否定是假命题,即是假命题;对于命题,充分性:中,若,则,由余弦函数的单调性可知,即,即可得到,即充分性成立;必要性:中,若,结合余弦函数的单调性可知,即,可得到,即必要性成立.故命题正确;对于命题,将函数的图象向左平移个单位长度,可得到的图象,即命题是假命题故假命题有.故选:C【点睛】本题考查了命题真假的判断,考查了余弦函数单调性的应用,考查了三角函数图象的平移变换,考查了学生的逻辑推理能力,属于基础题.12C【解析】试题分析:将参数a与变量x分离,将不等式恒成立问题转化为求函
12、数最值问题,即可得到结论解:不等式x2+ax+10对一切x(0,成立,等价于a-x-对于一切成立,y=-x-在区间上是增函数a-a的最小值为-故答案为C考点:不等式的应用点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13 【解析】求出二项展开式的通项,令指数为零,求出参数的值,代入可得出展开式中的常数项;求出项的系数,利用作商法可求出系数最大的项.【详解】的展开式的通项为,令,得,所以,展开式中的常数项为;令,令,即,解得,因此,展开式中系数最大的项为.故答案为:;.【点睛】本题考查二项
13、展开式中常数项的求解,同时也考查了系数最大项的求解,涉及展开式通项的应用,考查分析问题和解决问题的能力,属于中等题.1490 【解析】易得平面PAD,P点在与BA垂直的圆面内运动,显然,PA是圆的直径时,PA最长;将四棱锥补形为长方体,易得为球的直径即可得到PD,从而求得四棱锥的体积.【详解】如图,由及,得平面PAD,即P点在与BA垂直的圆面内运动,易知,当P、A三点共线时,PA达到最长,此时,PA是圆的直径,则;又,所以平面ABCD,此时可将四棱锥补形为长方体,其体对角线为,底面边长为2的正方形,易求出,高,故四棱锥体积.故答案为: (1) 90 ; (2) .【点睛】本题四棱锥外接球有关的
14、问题,考查学生空间想象与逻辑推理能力,是一道有难度的压轴填空题.15【解析】设,由椭圆和双曲线的定义得到,根据是以为底边的等腰三角形,得到 ,从而有,根据,得到,再利用导数法求的范围.【详解】设,由椭圆的定义得 ,由双曲线的定义得,所以,因为是以为底边的等腰三角形,所以,即 ,因为,所以 ,因为,所以,所以,即,而,因为,所以在上递增,所以.故答案为:【点睛】本题主要考查椭圆,双曲线的定义和几何性质,还考查了运算求解的能力,属于中档题.16 【解析】的展开式的通项为:.令,得.答案为:-40.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r1项,再由特
15、定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r1项,由特定项得出r值,最后求出其参数.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)见证明;(2)【解析】(1)设是的中点,连接、,先证明是平行四边形,再证明平面,即(2)以为坐标原点,的方向为轴的正方向,建空间直角坐标系,分别计算各个点坐标,计算平面法向量,利用向量的夹角公式得到直线与平面所成角的正弦值.【详解】(1)证明:设是的中点,连接、,是的中点, ,是平行四边形,由余弦定理得,平面,;(2)由(1)得平面,平面平面,过点作,垂足为,平面,以为坐标原点,的方向
16、为轴的正方向,建立如图的空间直角坐标系,则,设是平面的一个法向量,则,令,则,直线与平面所成角的正弦值为.【点睛】本题考查了线面垂直,线线垂直,利用空间直角坐标系解决线面夹角问题,意在考查学生的空间想象能力和计算能力.18(1);(2)680元.【解析】(1)根据题意,列方程,然后求解即可(2)根据题意,计算出10000元使用“余额宝”的利息为(元)和10000元使用“财富通”的利息为(元),得到所有可能的取值为560(元),700(元),840(元),然后根据所有可能的取值,计算出相应的概率,并列出的分布列表,然后求解数学期望即可【详解】(1)据题意,得,所以.(2)据,得这被抽取的7人中使
17、用“余额宝”的有4人,使用“财富通”的有3人.10000元使用“余额宝”的利息为(元).10000元使用“财富通”的利息为(元).所有可能的取值为560(元),700(元),840(元).,.的分布列为560700840所以(元).【点睛】本题考查频数分布表以及分布列和数学期望问题,属于基础题19(1)见解析(2).【解析】(1)与平面垂直,过点作与平面平行的平面即可(2)建立空间直角坐标系求线面角正弦值【详解】解:(1)截面如下图所示:其中,分别为边,的中点,则垂直于平面.(2)建立如图所示的空间直角坐标系,则,所以,.设平面的一个法向量为,则.不妨取,则,所以与该平面所成角的正弦值为.(若
18、将作为该平面法向量,需证明与该平面垂直)【点睛】考查确定平面的方法以及线面角的求法,中档题.20(1);(2)10【解析】(1)消去参数,可得曲线C的普通方程,再根据极坐标与直角坐标的互化公式,代入即可求得曲线C的极坐标方程;(2)将代入曲线C的极坐标方程,利用根与系数的关系,求得,进而得到=,结合三角函数的性质,即可求解.【详解】(1)由题意,曲线C的参数方程为,消去参数,可得曲线C的普通方程为,即,又由,代入可得曲线C的极坐标方程为.(2)将代入,得,即,所以=,其中,当时,取最大值,最大值为10.【点睛】本题主要考查了参数方程与普通方程,极坐标方程与直角坐标方程的互化,以及曲线的极坐标方程的应用,着重考查了运算与求解能力,属于中档试题.21(1),(2)【解析】(1)根据机器人的进行规律可确定、的值;(2)首先根据机器人行进规则知机器人沿轴行进步,必须沿轴负方向
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025湖南建筑安全员-C证考试(专职安全员)题库附答案
- 贵州大学《钢琴合奏》2023-2024学年第一学期期末试卷
- 贵州财经大学《社会经济调查与写作》2023-2024学年第一学期期末试卷
- 2025吉林建筑安全员-C证考试(专职安全员)题库附答案
- 贵阳信息科技学院《韩国语听力》2023-2024学年第一学期期末试卷
- 硅湖职业技术学院《房屋建筑学A》2023-2024学年第一学期期末试卷
- 2025山东省建筑安全员《C证》考试题库及答案
- 广州幼儿师范高等专科学校《级管理与主任工作实务》2023-2024学年第一学期期末试卷
- 2025江西建筑安全员《C证》考试题库及答案
- 广州卫生职业技术学院《生态环境与人类发展》2023-2024学年第一学期期末试卷
- 2025年国务院发展研究中心信息中心招聘应届毕业生1人高频重点提升(共500题)附带答案详解
- 2024年公安机关理论考试题库500道及参考答案
- 2024年全国《国防和兵役》理论知识竞赛试题库与答案
- 特殊情况施工的技术措施
- 企业知识产权保护策略及实施方法研究报告
- 2024年07月11026经济学(本)期末试题答案
- 2024年中小企业股权融资合同3篇
- 2024年01月11289中国当代文学专题期末试题答案
- 2024年秋季生物教研组工作计划
- 2024年云南高中学业水平合格考历史试卷真题(含答案详解)
- 大学物理(二)知到智慧树章节测试课后答案2024年秋湖南大学
评论
0/150
提交评论