2021-2022学年安徽省无为县中学高考数学四模试卷含解析_第1页
2021-2022学年安徽省无为县中学高考数学四模试卷含解析_第2页
2021-2022学年安徽省无为县中学高考数学四模试卷含解析_第3页
2021-2022学年安徽省无为县中学高考数学四模试卷含解析_第4页
2021-2022学年安徽省无为县中学高考数学四模试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是( )ABCD82某四棱锥的三视图如图所示,则该四棱锥的体积为( )ABCD3展开项中的常数项为A

2、1B11C-19D514已知集合的所有三个元素的子集记为记为集合中的最大元素,则()ABCD5已知不同直线、与不同平面、,且,则下列说法中正确的是( )A若,则B若,则C若,则D若,则6不等式组表示的平面区域为,则( )A,B,C,D,7某学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为的样本,其频率分布直方图如图所示,其中支出在(单位:元)的同学有34人,则的值为( )A100B1000C90D908已知三棱锥的四个顶点都在球的球面上,平面,是边长为的等边三角形,若球的表面积为,则直线与平面所成角的正切值为()ABCD9已知,是椭圆的左、右焦点,过的直线交椭圆于两点.若依次构成等差

3、数列,且,则椭圆的离心率为ABCD10一个四面体所有棱长都是4,四个顶点在同一个球上,则球的表面积为( )ABCD11若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是( )A36 cm3B48 cm3C60 cm3D72 cm312若复数满足(是虚数单位),则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13一个空间几何体的三视图及部分数据如图所示,则这个几何体的体积是_14若实数,满足不等式组,则的最小值为_.15如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,则此四棱锥的体积为_16已知非零向量,满足

4、,且,则与的夹角为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出1盒该产品获利50元,未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季进了160盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.(1)根据直方图估计这个开学季内市场需求量的平均数和众数;(2)将表示为的函数;(3)以需求量的频率作为各需求量的概率,求开学季利润不少于4800元的概率.18(12分)如图,在四棱锥中,

5、侧面为等边三角形,且垂直于底面, ,分别是的中点.(1)证明:平面平面;(2)已知点在棱上且,求直线与平面所成角的余弦值.19(12分)设函数,().(1)若曲线在点处的切线方程为,求实数a、m的值;(2)若对任意恒成立,求实数a的取值范围;(3)关于x的方程能否有三个不同的实根?证明你的结论.20(12分)在中,角、所对的边分别为、,角、的度数成等差数列,.(1)若,求的值;(2)求的最大值.21(12分)某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:组别男2351

6、51812女051010713 (1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?(2)若问卷得分不低于80分的人称为“环保达人”视频率为概率在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动每次抽奖获得红包的金额和对应的概率.如下表:红包金额(单位:元)1020概率现某市民要参加此次问卷调查,记(单位:元)为该市民参

7、加间卷调查获得的红包金额,求的分布列及数学期望附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82822(10分)三棱柱中,平面平面,点为棱的中点,点为线段上的动点.(1)求证:;(2)若直线与平面所成角为,求二面角的正切值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】由三视图还原出原几何体,得出几何体的结构特征,然后计算体积【详解】由三视图知原几何体是一个四棱锥,四棱锥底面是边长为2的正方形,高为2,直观图如图所示,故选:

8、A【点睛】本题考查三视图,考查棱锥的体积公式,掌握基本几何体的三视图是解题关键2B【解析】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,由此求出四棱锥的体积【详解】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,画出四棱锥的直观图,如图所示:则该四棱锥的体积为.故选:B.【点睛】本题考查了利用三视图求几何体体积的问题,是基础题3B【解析】展开式中的每一项是由每个括号中各出一项组成的,所以可分成三种情况.【详解】展开式中的项为常数项,有3种情况:(1)5个括号都出1,即;(2)两个括号出,两个括号出,一个括号出1,即;(3)一个括号出,一个括号出,三个括号出1,即;所以展开项中的常

9、数项为,故选B.【点睛】本题考查二项式定理知识的生成过程,考查定理的本质,即展开式中每一项是由每个括号各出一项相乘组合而成的.4B【解析】分类讨论,分别求出最大元素为3,4,5,6的三个元素子集的个数,即可得解.【详解】集合含有个元素的子集共有,所以在集合中:最大元素为的集合有个;最大元素为的集合有;最大元素为的集合有;最大元素为的集合有;所以故选:【点睛】此题考查集合相关的新定义问题,其本质在于弄清计数原理,分类讨论,分别求解.5C【解析】根据空间中平行关系、垂直关系的相关判定和性质可依次判断各个选项得到结果.【详解】对于,若,则可能为平行或异面直线,错误;对于,若,则可能为平行、相交或异面

10、直线,错误;对于,若,且,由面面垂直的判定定理可知,正确;对于,若,只有当垂直于的交线时才有,错误.故选:.【点睛】本题考查空间中线面关系、面面关系相关命题的辨析,关键是熟练掌握空间中的平行关系与垂直关系的相关命题.6D【解析】根据题意,分析不等式组的几何意义,可得其表示的平面区域,设,分析的几何意义,可得的最小值,据此分析选项即可得答案.【详解】解:根据题意,不等式组其表示的平面区域如图所示,其中 ,设,则,的几何意义为直线在轴上的截距的2倍,由图可得:当过点时,直线在轴上的截距最大,即,当过点原点时,直线在轴上的截距最小,即,故AB错误;设,则的几何意义为点与点连线的斜率,由图可得最大可到

11、无穷大,最小可到无穷小,故C错误,D正确;故选:D.【点睛】本题考查本题考查二元一次不等式的性质以及应用,关键是对目标函数几何意义的认识,属于基础题.7A【解析】利用频率分布直方图得到支出在的同学的频率,再结合支出在(单位:元)的同学有34人,即得解【详解】由题意,支出在(单位:元)的同学有34人由频率分布直方图可知,支出在的同学的频率为故选:A【点睛】本题考查了频率分布直方图的应用,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.8C【解析】设为中点,先证明平面,得出为所求角,利用勾股定理计算,得出结论【详解】设分别是的中点平面 是等边三角形 又平面 为与平面所成的角是边长为的等边

12、三角形,且为所在截面圆的圆心球的表面积为 球的半径平面 本题正确选项:【点睛】本题考查了棱锥与外接球的位置关系问题,关键是能够通过垂直关系得到直线与平面所求角,再利用球心位置来求解出线段长,属于中档题9D【解析】如图所示,设依次构成等差数列,其公差为.根据椭圆定义得,又,则,解得,.所以,.在和中,由余弦定理得,整理解得.故选D10A【解析】将正四面体补成正方体,通过正方体的对角线与球的半径关系,求解即可【详解】解:如图,将正四面体补形成一个正方体,正四面体的外接球与正方体的外接球相同,四面体所有棱长都是4,正方体的棱长为,设球的半径为,则,解得,所以,故选:A【点睛】本题主要考查多面体外接球

13、问题,解决本题的关键在于,巧妙构造正方体,利用正方体的外接球的直径为正方体的对角线,从而将问题巧妙转化,属于中档题11B【解析】试题分析:该几何体上面是长方体,下面是四棱柱;长方体的体积,四棱柱的底面是梯形,体积为,因此总的体积.考点:三视图和几何体的体积.12B【解析】利用复数乘法运算化简,由此求得.【详解】依题意,所以.故选:B【点睛】本小题主要考查复数的乘法运算,考查复数模的计算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】先还原几何体,再根据柱体体积公式求解【详解】空间几何体为一个棱柱,如图,底面为边长为的直角三角形,高为的棱柱,所以体积为【点睛】本题考查三

14、视图以及柱体体积公式,考查基本分析求解能力,属基础题145【解析】根据题意,画出图像,数形结合,将目标转化为求动直线纵截距的最值,即可求解【详解】画出不等式组,表示的平面区域如图阴影区域所示,令,则.分析知,当,时,取得最小值,且.【点睛】本题考查线性规划问题,属于基础题15【解析】画图直观图可得该几何体为棱锥,再计算高求解体积即可.【详解】解:如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,此四棱锥中,是边长为的正方形,是边长为的等边三角形,故,又,故平面平面,的高是四棱锥的高,此四棱锥的体积为:故答案为:【点睛】本题主要考查了四

15、棱锥中的长度计算以及垂直的判定和体积计算等,需要根据题意16(或写成)【解析】设与的夹角为,通过,可得,化简整理可求出,从而得到答案.【详解】设与的夹角为可得,故,将代入可得得到,于是与的夹角为.故答案为:.【点睛】本题主要考查向量的数量积运算,向量垂直转化为数量积为0是解决本题的关键,意在考查学生的转化能力,分析能力及计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1),众数为150;(2) ;(3)【解析】(1)由频率直方图分别求出各组距内的频率,由此能求出这个开学季内市场需求量的众数和平均数;(2)由已知条件推导出当时,当时,由此能将表示为的函数;(3)利用

16、频率分布直方图能求出利润不少于4800元的概率【详解】(1)由直方图可估计需求量的众数为150 ,由直方图可知的频率为:由直方图可知的频率为:由直方图可知的频率为:由直方图可知的频率为:由直方图可知的频率为:估计需求量的平均数为:(2)当时,当时, (3)由(2)知 当时,当时,得开学季利润不少于4800元的需求量为由频率分布直方图可所求概率【点睛】本题考查频率分布直方图的应用,考查函数解析式的求法,考查概率的估计,是中档题,解题时要注意频率分布直方图的合理运用18(1)证明见解析;(2).【解析】(1)由平面几何知识可得出四边形是平行四边形,可得面,再由面面平行的判定可证得面面平行;(2)由

17、(1)可知,两两垂直,故建立空间直角坐标系,可求得面PAB的法向量,再运用线面角的向量求法,可求得直线与平面所成角的余弦值.【详解】(1),,又,,而、分别是、的中点, 故面,又且,故四边形是平行四边形,面,又,是面内的两条相交直线, 故面面. (2)由(1)可知,两两垂直,故建系如图所示,则,, 设是平面PAB的法向量,,令,则, 直线NE与平面所成角的余弦值为.【点睛】本题考查空间的面面平行的判定,以及线面角的空间向量的求解方法,属于中档题.19(1),;(2);(3)不能,证明见解析【解析】(1)求出,结合导数的几何意义即可求解;(2)构造,则原题等价于对任意恒成立,即时,利用导数求最值

18、即可,值得注意的是,可以通过代特殊值,由求出的范围,再研究该范围下单调性;(3)构造并进行求导,研究单调性,结合函数零点存在性定理证明即可.【详解】(1),曲线在点处的切线方程为,解得.(2)记,整理得,由题知,对任意恒成立,对任意恒成立,即时,解得,当时,对任意,即在单调递增,此时,实数的取值范围为.(3)关于的方程不可能有三个不同的实根,以下给出证明:记,则关于的方程有三个不同的实根,等价于函数有三个零点,当时,记,则,在单调递增,即,在单调递增,至多有一个零点;当时,记,则,在单调递增,即在单调递增,至多有一个零点,则至多有两个单调区间,至多有两个零点.因此,不可能有三个零点.关于的方程

19、不可能有三个不同的实根.【点睛】本题考查了导数几何意义的应用、利用导数研究函数单调性以及函数的零点存在性定理,考查了转化与化归的数学思想,属于难题.20 (1);(2)【解析】(1) 由角的度数成等差数列,得.又.由正弦定理,得,即.由余弦定理,得,即,解得.(2) 由正弦定理,得.由,得.所以当,即时,.【方法点睛】解三角形问题基本思想方法:从条件出发,利用正弦定理(或余弦定理)进行代换、转化逐步化为纯粹的边与边或角与角的关系,即考虑如下两条途径:统一成角进行判断,常用正弦定理及三角恒等变换;统一成边进行判断,常用余弦定理、面积公式等21 (1)不能;(2) ;分布列见解析,.【解析】(1)根据题目所给的数据可求22列联表即可;计算K的观测值K2,对照题目中的表格,得出统计结论(2)由相互独立事件的概率可得男“环保达人”又有女“环保达人”的概率:P1()3()3,解出X的分布列及数学期望E(X)即可;【详解】(1)由图中表格可得列联表如下:非“环保关注者”是“环保关注者”合计男104555女153045合计2575100将列联表中的数据代入公式计算得K”的观测值,所以在犯错误的概率不超过0. 05的前提下,不能认为是否为“环保关注者”与性别有关. (2)视频率为概率,用户为男“环保达人”的概率为.为女“环保达人”的概率

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论