2021-2022学年福福建省泉州市高三第三次模拟考试数学试卷含解析_第1页
2021-2022学年福福建省泉州市高三第三次模拟考试数学试卷含解析_第2页
2021-2022学年福福建省泉州市高三第三次模拟考试数学试卷含解析_第3页
2021-2022学年福福建省泉州市高三第三次模拟考试数学试卷含解析_第4页
2021-2022学年福福建省泉州市高三第三次模拟考试数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡

2、一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,若,则的最小值为( )A1B2C3D42已知复数满足,则( )ABCD3设等差数列的前项和为,若,则( )A21B22C11D124如图,在平面四边形ABCD中,若点E为边CD上的动点,则的最小值为 ( )ABCD5已知向量,(其中为实数),则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件6关于的不等式的解集是,则关于的不等式的解集是( )ABCD7已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则( )AB3CD2

3、8将函数图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移个单位长度,则所得函数图象的一个对称中心为( )ABCD9已知某几何体的三视图如图所示,则该几何体外接球的表面积为( )ABCD10设,且,则( )ABCD11将3个黑球3个白球和1个红球排成一排,各小球除了颜色以外其他属性均相同,则相同颜色的小球不相邻的排法共有( )A14种B15种C16种D18种12已知双曲线的焦距为,若的渐近线上存在点,使得经过点所作的圆的两条切线互相垂直,则双曲线的离心率的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知,满足约束条件,则的最大值为_14已知一组数据1.

4、6,1.8,2,2.2,2.4,则该组数据的方差是_15已知(为虚数单位),则复数_16已知双曲线()的左右焦点分别为,为坐标原点,点为双曲线右支上一点,若,则双曲线的离心率的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设函数f(x)=x24xsinx4cosx (1)讨论函数f(x)在,上的单调性;(2)证明:函数f(x)在R上有且仅有两个零点18(12分)已知,点分别为椭圆的左、右顶点,直线交于另一点为等腰直角三角形,且.()求椭圆的方程;()设过点的直线与椭圆交于两点,总使得为锐角,求直线斜率的取值范围.19(12分)已知数列的前项和为,且满

5、足().(1)求数列的通项公式;(2)设(),数列的前项和.若对恒成立,求实数,的值.20(12分)在直角坐标系中,曲线的参数方程为(为参数,为实数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线与曲线交于,两点,线段的中点为 (1)求线段长的最小值; (2)求点的轨迹方程21(12分)已知函数.(1)证明:当时,;(2)若函数只有一个零点,求正实数的值.22(10分)已知各项均不相等的等差数列的前项和为, 且成等比数列.(1)求数列的通项公式;(2)求数列的前项和.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目

6、要求的。1B【解析】解出,分别代入选项中 的值进行验证.【详解】解:,.当 时,,此时不成立.当 时,,此时成立,符合题意.故选:B.【点睛】本题考查了不等式的解法,考查了集合的关系.2A【解析】根据复数的运算法则,可得,然后利用复数模的概念,可得结果.【详解】由题可知:由,所以所以故选:A【点睛】本题主要考查复数的运算,考验计算,属基础题.3A【解析】由题意知成等差数列,结合等差中项,列出方程,即可求出的值.【详解】解:由为等差数列,可知也成等差数列,所以 ,即,解得.故选:A.【点睛】本题考查了等差数列的性质,考查了等差中项.对于等差数列,一般用首项和公差将已知量表示出来,继而求出首项和公

7、差.但是这种基本量法计算量相对比较大,如果能结合等差数列性质,可使得计算量大大减少.4A【解析】分析:由题意可得为等腰三角形,为等边三角形,把数量积分拆,设,数量积转化为关于t的函数,用函数可求得最小值。详解:连接BD,取AD中点为O,可知为等腰三角形,而,所以为等边三角形,。设=所以当时,上式取最小值 ,选A.点睛:本题考查的是平面向量基本定理与向量的拆分,需要选择合适的基底,再把其它向量都用基底表示。同时利用向量共线转化为函数求最值。5A【解析】结合向量垂直的坐标表示,将两个条件相互推导,根据能否推导的情况判断出充分、必要条件.【详解】由,则,所以;而当,则,解得或.所以“”是“”的充分不

8、必要条件.故选:A【点睛】本小题考查平面向量的运算,向量垂直,充要条件等基础知识;考查运算求解能力,推理论证能力,应用意识.6A【解析】由的解集,可知及,进而可求出方程的解,从而可求出的解集.【详解】由的解集为,可知且,令,解得,因为,所以的解集为,故选:A.【点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题.7D【解析】根据抛物线的定义求得,由此求得的长.【详解】过作,垂足为,设与轴的交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【点睛】本小题主要考查抛物线的定义,考查数形结合的数学思想方法,属于基础题.8D【解析】先化简

9、函数解析式,再根据函数的图象变换规律,可得所求函数的解析式为,再由正弦函数的对称性得解.【详解】,将函数图象上各点的横坐标伸长到原来的3倍,所得函数的解析式为,再向右平移个单位长度,所得函数的解析式为,,可得函数图象的一个对称中心为,故选D.【点睛】三角函数的图象与性质是高考考查的热点之一,经常考查定义域、值域、周期性、对称性、奇偶性、单调性、最值等,其中公式运用及其变形能力、运算能力、方程思想等可以在这些问题中进行体现,在复习时要注意基础知识的理解与落实三角函数的性质由函数的解析式确定,在解答三角函数性质的综合试题时要抓住函数解析式这个关键,在函数解析式较为复杂时要注意使用三角恒等变换公式把

10、函数解析式化为一个角的一个三角函数形式,然后利用正弦(余弦)函数的性质求解9C【解析】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,利用正弦定理求出底面三角形外接圆的半径,根据三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,求出球的半径,即可求解球的表面积.【详解】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,如图:由底面边长可知,底面三角形的顶角为,由正弦定理可得,解得, 三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,所以,该几何体外接球的表面积为:.故选:C【点睛】本题考查了多面体的内切球与外接球问题

11、,由三视图求几何体的表面积,考查了学生的空间想象能力,属于基础题.10C【解析】将等式变形后,利用二次根式的性质判断出,即可求出的范围.【详解】 即故选:C【点睛】此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.11D【解析】采取分类计数和分步计数相结合的方法,分两种情况具体讨论,一种是黑白依次相间,一种是开始仅有两个相同颜色的排在一起【详解】首先将黑球和白球排列好,再插入红球.情况1:黑球和白球按照黑白相间排列(“黑白黑白黑白”或“白黑白黑白黑”),此时将红球插入6个球组成的7个空中即可,因此共有27=14种;情况2:黑球或白球中仅有两个相同颜色的排在一起(“黑白白黑白黑

12、”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此时红球只能插入两个相同颜色的球之中,共4种.综上所述,共有14+4=18种.故选:D【点睛】本题考查排列组合公式的具体应用,插空法的应用,属于基础题12B【解析】由可得;由过点所作的圆的两条切线互相垂直可得,又焦点到双曲线渐近线的距离为,则,进而求解.【详解】,所以离心率,又圆是以为圆心,半径的圆,要使得经过点所作的圆的两条切线互相垂直,必有,而焦点到双曲线渐近线的距离为,所以,即,所以,所以双曲线的离心率的取值范围是.故选:B【点睛】本题考查双曲线的离心率的范围,考查双曲线的性质的应用.二、填空题:本题共4小题,每小题5分,共20分

13、。13【解析】根据题意,画出可行域,将目标函数看成可行域内的点与原点距离的平方,利用图象即可求解.【详解】可行域如图所示,易知当,时,的最大值为故答案为:9.【点睛】本题考查了利用几何法解决非线性规划问题,属于中档题.140.08【解析】先求解这组数据的平均数,然后利用方差的公式可得结果.【详解】首先求得,故答案为:0.08.【点睛】本题主要考查数据的方差,明确方差的计算公式是求解的关键,侧重考查数据分析的核心素养.15【解析】解:故答案为:【点睛】本题考查复数代数形式的乘除运算,属于基础题.16【解析】法一:根据直角三角形的性质和勾股定理得,,又由双曲线的定义得,将离心率表示成关于的式子,再

14、令,则,令对函数求导研究函数在上单调性,可求得离心率的范围.法二:令,根据直角三角形的性质和勾股定理得,将离心率表示成关于角的三角函数,根据三角函数的恒等变化转化为关于的函数,可求得离心率的范围.【详解】法一:,,,,设,则,令,所以时,在上单调递增, ,.法二:,令,.故答案为:.【点睛】本题考查求双曲线的离心率的范围的问题,关键在于将已知条件转化为与双曲线的有关,从而将离心率表示关于某个量的函数,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17见解析【解析】(1)f(x)=2x4xcosx4sinx+4sinx=, 由f(x)=1,x,得x=1或或当x变化时,

15、f(x)和f(x)的变化情况如下表:x1f(x)1+11+f(x)单调递减极小值单调递增极大值单调递减极小值单调递增所以f(x)在区间,上单调递减,在区间,上单调递增(2)由(1)得极大值为f(1)=4;极小值为f()=f()f(1)1,所以f(x)在,上各有一个零点 显然x(,2)时,4xsinx1,x24cosx1,所以f(x)1;x2,+)时,f(x)x24x462464=81, 所以f(x)在(,+)上没有零点因为f(x)=(x)24(x)sin(x)4cos(x)=x24xsinx4cosx=f(x),所以f(x)为偶函数,从而x1,即f(x)在(,)上也没有零点故f(x)仅在,上各

16、有一个零点,即f(x)在R上有且仅有两个零点18();().【解析】()由题意可知:由,求得点坐标,即可求得椭圆的方程;()设直线,代入椭圆方程,由韦达定理,由,由为锐角,则,由向量数量积的坐标公式,即可求得直线斜率的取值范围【详解】解:()根据题意是等腰直角三角形,设由得则代入椭圆方程得椭圆的方程为()根据题意,直线的斜率存在,可设方程为设由得由直线与椭圆有两个不同的交点则即得又为锐角则即 由得或故直线斜率可取值范围是【点睛】本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考查向量数量积的坐标运算,韦达定理,考查计算能力,属于中档题19(1)(2),.【解析】(1)根据数列的

17、通项与前n项和的关系式,即求解数列的通项公式;(2)由(1)可得,利用等比数列的前n项和公式和裂项法,求得,结合题意,即可求解.【详解】(1)由题意,当时,由,解得;当时,可得,即,显然当时上式也适合,所以数列的通项公式为.(2)由(1)可得,所以.因为对恒成立,所以,.【点睛】本题主要考查了数列的通项公式的求解,等差数列的前n项和公式,以及裂项法求和的应用,其中解答中熟记等差、等比数列的通项公式和前n项和公式,以及合理利用“裂项法”求和是解答的关键,着重考查了推理与运算能力,属于中档试题.20(1)(2)【解析】(1)将曲线的方程化成直角坐标方程为,当时,线段取得最小值,利用几何法求弦长即可

18、.(2)当点与点不重合时,设,由利用向量的数量积等于可求解,最后验证当点与点重合时也满足.【详解】解曲线的方程化成直角坐标方程为即圆心,半径,曲线为过定点的直线,易知在圆内,当时,线段长最小为当点与点不重合时,设, 化简得当点与点重合时,也满足上式,故点的轨迹方程为【点睛】本题考查了极坐标与普通方程的互化、直线与圆的位置关系、列方程求动点的轨迹方程,属于基础题.21(1)证明见解析;(2).【解析】(1)把转化成,令,由题意得,即证明恒成立,通过导数求证即可(2)直接求导可得,令,得或,故根据0与的大小关系来进行分类讨论即可【详解】证明:(1)令,则.分析知,函数的增区间为,减区间为.所以当时,.所以,即,所以.所以当时,.解:(2)因为,所以.讨论:当时,此时函数在区间上单调递减.又,故此时函数仅有一个零点为0;当时,令,得,故函数的增区间为,减区间为,.又极大值,所以极小值.当时,有.又,此时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论