2021年中考数学应用题专题练习(原卷版)专题04 一元一次不等式(组)与实际问题_第1页
2021年中考数学应用题专题练习(原卷版)专题04 一元一次不等式(组)与实际问题_第2页
2021年中考数学应用题专题练习(原卷版)专题04 一元一次不等式(组)与实际问题_第3页
2021年中考数学应用题专题练习(原卷版)专题04 一元一次不等式(组)与实际问题_第4页
2021年中考数学应用题专题练习(原卷版)专题04 一元一次不等式(组)与实际问题_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、专题04:一元一次不等式(组)与实际问题-2021年中考数学应用题专题练习一、解答题1为配合崇明“花博会”,花农黄老伯培育了甲、乙两种花木各若干株如果培育甲、乙两种花木各一株,那么共需成本500元;如果培育甲种花木3株和乙种花木2株,那么共需成本1200元(1)求甲、乙两种花木每株的培育成本分别为多少元?(2)市场调查显示,甲种花木的市场售价为每株300元,乙种花木的市场售价为每株500元黄老伯决定在将成本控制在不超过30000元的前提下培育两种花木,并使总利润不少于18000元若黄老伯培育的乙种花木的数量比甲种花木的数量的3倍少10株,请问黄老伯应该培育甲、乙两种花木各多少株?2某电器商店准

2、备购进甲、乙两种微波炉出售,它们的进价和售价如下表现计划用不超过37500元购进这两种微波炉共100台,其中甲微波炉不少于65台(1)求甲种微波炉最多购进多少台?(2)该电器商店对甲种微波炉每台降价()元,乙种微波炉售价不变如果这100台微波炉都可售完,那么该电器商店如何进货才能获得最大利润?微波炉进价(元/台)售价(元/台)甲400600乙3004503某出租汽车公司计划购买A型和B型两种节能汽车,若购买A型汽车4辆,B型汽车7辆,共需310万元;若购买A型汽车10辆,B型汽车15辆,共需700万元(1)A型和B型汽车每辆的价格分别是多少万元?(2)该公司计划购买A型和B型两种汽车共10辆,

3、费用不超过285万元,且A型汽车的数量少于B型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用4有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用5某商店销售5台A型和10台B型电脑的利润为3500元,销售10台A型和10台B型电脑的利润为4500元,(1)求每台A型电脑

4、和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共80台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这80台电脑的销售总利润为y元求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调元,且限定商店销售B型电脑的利润不低于10000元,若商店保持两种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这80台电脑销售总利润最大的进货方案6为改善广大百姓的生活品质,眉山市政府号召在广大农村大力发展养殖业某养殖户因地制宜,准备依靠一面9米长的墙围成矩形场地来养殖山羊,如图,如果篱笆总长18米,并

5、如图留一扇门(门的宽度为2米),请协助养殖户解决下列问题(1)若围成的矩形场地面积为48平方米,请求出矩形场地两边的长;(2)如果设米,矩形场地的面积为,试求出关于的函数关系式,并直接写出的最大值7在近期“抗疫”期间,某药店销售A、B两种型号的口罩,已知销售80只A型和45只B型的利润为21元,销售40只A型和60只B型的利润为18元(1)求每只A型口罩和B型口罩的销售利润;(2)该药店计划一次购进两种型号的口罩共2000只,其中B型口罩的进货量不少于A型口罩的进货量且不超过它的3倍,则该药店购进A型、B型口罩各多少只,才能使销售总利润最大?8某汽车租赁公司要购买轿车和面包车共10辆,其中轿车

6、至少要购买3辆,轿车每辆12万元,面包车每辆8万元,公司可投入的购车款不超过100万元;(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为250元,每辆面包车的日租金为150元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于2000元,那么应选择以上哪种购买方案?9小宜跟几位同学在某快餐厅吃饭,如图为此快餐厅的菜单若他们所点的餐食总共为10份盖饭,杯饮料,份凉拌菜(1)他们点了份套餐,份套餐,份套餐(均用含或的代数式表示);(2)若,且、套餐均至少点了1份,则最多有几种点餐方案10他指出:“扶贫先扶志,扶贫必扶智”某企业扶贫小组准备在春节前夕慰问贫困

7、户,为贫困户送去温暖该扶贫小组购买了一批慰问物资并安排两种货车运送据调查得知,2辆大货车与4辆小货车一次可以满载运输700件;5辆大货车与7辆小货车一次可以满载运输1450件(1)求1辆大货车和1辆小货车一次可以分别满载运输多少件物资?(2)计划租用两种货车共10辆运输这批物资,每辆大货车一次需费用5000元,每辆小货车一次需费用3000元若运输物资不少于1300件,且总费用不超过46000元请你指出共有几种运输方案,并计算哪种方案所需费用最少,最少费用是多少?112020年初,新冠疫情在武汉爆发“一方有难,八方支援”,某市筹集了大量的生活物资,用,两种型号的货车,分两批运往受灾严重的地区具体

8、运输情况如下:第一批第二批型货车的辆数(单位:辆)810型货车的辆数(单位:辆)425累计运输物资的吨数(单位:吨)128400备注:第一批、第二批每辆货车均满载(1)求、两种型号货车每辆满载分别能运多少吨生活物资? (2)该市后续又筹集了262.4吨生活物资,现已联系了6辆种型号货车试问至少还需联系多少辆种型号货车才能一次性将这批生活物资运往目的地?12为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨(1)求这批赈灾物资运往D、E两县的数量各是多少

9、?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220200200运往E县的费用(元/吨)250220210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?13202

10、0年5月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进、两种类型的便携式风扇到地摊一条街出售已知2台型风扇和5台型风扇进价共100元,3台型风扇和2台型风扇进价共62元(1)求型风扇、型风扇进货的单价各是多少元?(2)小丹准备购进这两种风扇共100台,根据市场调查发现,型风扇销售情况比型风扇好,小丹准备多购进型风扇,但数量不超过型风扇数量的3倍,购进、两种风扇的总金额不超过1170元根据以上信息,小丹共有哪些进货方案?哪种进货方案的费用最低?最低费用为多少元?14时代来临,互联网交互式行业成为新的商机,其中直播带货尤其被寄予厚望,直播带货正成为商家新的销售手段重庆

11、某火锅店通过直播助力推广该店特色火锅底料和便携式自热火锅直播当天火锅底料和自热火锅共销售9万份,其中火锅底料的销量不少于自热火锅的3.5倍(1)求当天的直播活动中火锅底料至少销售了多少万份?(2)为刺激消费,直播中推出了优惠活动直播前原价50元一份的火锅底料,降价售卖,原价30元一份的便携式火锅,降价售卖已知直播前火锅底料和自热火锅的日销量比直播当天分别少,且直播当天火锅底料的销量正好是(1)中的最小值,直播当天该店火锅底料和自热火锅的总日销售额比直播前的总日销售额多,求的值15在2020年新冠肺炎抗疫期间,小明决定在淘宝上销售一批口罩经市场调研:某类型口罩进价每袋为20元,当售价为每袋25元

12、时,销售量为250袋,若销售单价每提高1元,销售量就会减少10袋(1)直接写出小明销售该类型口罩销售量y(袋)与销售单价x(元)之间的函数关系式;每天所得销售利润w(元)与销售单价x(元)之间的函数关系式(2)若小明想每天获得该类型口罩的销售利润2000元时,则销售单价应定为多少元?(3)若每天销售量不少于100袋,且每袋口罩的销售利润至少为17元,则销售单价定位多少元时,此时利润最大,最大利润是多少?16某公司组织30辆汽车装运A、B、C三种产品共125吨到外地销售,规定每辆汽车只装运一种产品,且必须装满;装运每种产品的汽车不少于4辆;同时装运的B种产品的重量不超过装运的A、C两种产品重量和

13、(1)设用x辆汽车装运A种产品,用y辆汽车装运B种产品,根据下表提供的信息,求y与x之间的函数关系式并写出自变量的x取值范围产品品种ABC每辆汽车装运量(吨)543每吨产品获利(万元)0.60.70.8(2)设此次外销活动的利润为Q(万元),求Q与x之间的函数关系式,并求出怎样装运才能获得最大利润(3)由于市场行情的变化,将A、C两种产品每吨售价提高a万元(0.01a0.03),其他条件不变,求销售这批产品获得最大利润的方案17某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元(1)该网店甲、乙两种羽毛球

14、每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?18众志成城抗疫情,全国人民在行动某公司决定安排大、小货车共20辆,运送260吨物资到地和地,支援当地抗击疫情每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资已知这两种货

15、车的运费如下表:目的地车型地(元/辆)地(元/辆)大货车9001000小货车500700现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往地,其余前往地,设前往地的大货车有辆,这20辆货车的总运费为元(1)这20辆货车中,大货车、小货车各有多少辆?(2)求与的函数解析式,并直接写出的取值范围;(3)若运往地的物资不少于140吨,求总运费的最小值19为支援抗疫前线,某省红十字会采购甲、乙两种抗疫物资共吨,甲物资单价为万元/吨,乙物资单价为万元吨,采购两种物资共花费万元(1)求甲、乙两种物资各采购了多少吨?(2)现在计划安排两种不同规格的卡车共辆来运输这

16、批物资甲物资吨和乙物资吨可装满一辆型卡车;甲物资吨和乙物资吨可装满一辆型卡车按此要求安排两型卡车的数量,请问有哪几种运输方案?20某校足球队需购买、两种品牌的足球已知品牌足球的单价比品牌足球的单价高20元,且用900元购买品牌足球的数量用720元购买品牌足球的数量相等(1)求、两种品牌足球的单价;(2)若足球队计划购买、两种品牌的足球共90个,且品牌足球的数量不小于品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元设购买品牌足球个,总费用为元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?21为加快复工复产,某企业需运输批物资据调查得知,2辆大货车与3辆

17、小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱(1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5 000元,每辆小货车一次需费用3000元若运输物资不少于1500箱,且总费用小于54000元,请你列出所有运输方案,并指出哪种方案所需费用最少,最少费用是多少?22某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,用3600元购买排球的个数要比用3600元购买篮球的个数多10个(1)问每一个篮球、排球的进价各是多少元?(2)该文体商店计划购进篮球和排球共

18、100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?23为倡导健康环保,自带水杯已成为一种好习惯,某超市销售甲,乙两种型号水杯,进价和售价均保持不变,其中甲种型号水杯进价为25元/个,乙种型号水杯进价为45元/个,下表是前两月两种型号水杯的销售情况:时间销售数量(个)销售收入(元)(销售收入售价销售数量)甲种型号乙种型号第一月2281100第二月38242460(1)求甲、乙两种型号水杯的售价;(2)第三月超市计划再购进甲、乙两种型号水杯共80个,这批水

19、杯进货的预算成本不超过2600元,且甲种型号水杯最多购进55个,在80个水杯全部售完的情况下设购进甲种号水杯a个,利润为w元,写出w与a的函数关系式,并求出第三月的最大利润24某工厂计划生产、两种产品共60件,需购买甲、乙两种材料,生产一件产品需甲种材料4千克,乙种材料1千克;生产一件产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元(1)甲、乙两种材料每千克分别是多少元?(2现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产产品不少于38件,问符合生产条件的生产方案有哪几种?(3)在(2)的条件下,若生产

20、一件产品需加工费40元,若生产一件产品需加工费50元,应选择哪种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)25锦潭社区计划对某区域进行绿化,经投标,由甲、乙两个工程队一起来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的倍,并且在独立完成面积为区域的绿化时,甲队比乙队少用天(1)求甲、乙两工程队每天各能完成的绿化面积;(2)若计划绿化的区域面积是,甲队每天绿化费用是万元,乙队每天绿化费用为万元当甲、乙各施工几天,既能刚好完成绿化任务,又能使总费用恰好为万元;按要求甲队至少施工天,乙队至多施工天,当甲乙各施工几天,既能刚好完成绿化任务,又使得总费用最少(施工天数

21、不能是小数)并求最少总费用26公司为了运输的方便,将生产的产品打包成件,运往同一目的地其中A产品和B产品共320件,A产品比B产品多80件(1)求打包成件的A产品和B产品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批产品全部运往同一目的地已知甲种货车最多可装A产品40件和B产品10件,乙种货车最多可装A产品和B产品各20件如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元则公司安排甲、乙两种货车时有几种方案?并说明公司选择哪种方案可使运输费最少?27随着城市化建设的发展,交通拥堵成为上班高峰时难以避免的现象为了解龙泉驿某条道路交通拥堵情况,龙泉某中学同学经实地

22、统计分析研究表明:当时,车流速度v(千米/小时)是车流密度x(辆/千米)的一次函数当该道路的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度为95辆/千米时,车流速度为50千米/小时(1)当时,求车流速度v(千米/小时)与车流密度x(辆/千米)的函数关系式;(2)为使该道路上车流速度大于40千米/小时且小于60千米/小时,应控制该道路上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过该道路上某观测点的车辆数,即:车流量=车流速度车流密度当时,求该道路上车流量y的最大值此时车流速度为多少?28某电脑公司经销甲种型号电脑,受各方因素影响,电脑价格将不断下降,今年三月份的电

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论