版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1为了解我县目前九年级学生对中考体育的重视程度,从全县5千多名九年级的学生中抽取200名学生作为样本,对其进行中考体育项目的测试,200名学生的体育平均成绩为40分则我县目前九
2、年级学生中考体育水平大概在( )A40分B200分C5000D以上都有可能2如图,将RtABC平移到ABC的位置,其中C90,使得点C与ABC的内心重合,已知AC4,BC3,则阴影部分的周长为( )A5B6C7D83已知如图,线段AB=60,AD=13,DE=17,EF=7,请问在D,E,F,三点中,哪一点最接近线段AB的黄金分割点( )AD 点BE 点CF点DD 点或 F点4如图,点E是正方形ABCD的边DC上一点,把ADE绕点A顺时针旋转90到ABF的位置,若四边形AECF的面积为25,DE=3,则AE的长为()AB5C8D45甲袋中装有形状、大小与质地都相同的红球3个,乙袋中装有形状、大
3、小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是()A从甲袋中随机摸出1个球,是黄球B从甲袋中随机摸出1个球,是红球C从乙袋中随机摸出1个球,是红球或黄球D从乙袋中随机摸出1个球,是黄球6已知函数的图象过点,则该函数的图象必在( )A第二、三象限B第二、四象限C第一、三象限D第三、四象限7下列选项的图形是中心对称图形的是()ABCD8下列交通标志中,是中心对称图形的是()ABCD9二次函数的大致图象如图所示,其对称轴为直线,点A的横坐标满足 ,图象与轴相交于两点,与轴相交于点.给出下列结论:;若,则;其中正确的个数是( )A1B2C3D410下列语句中,正确的是()相等的圆周角所对的
4、弧相等;同弧或等弧所对的圆周角相等;平分弦的直径垂直于弦,并且平分弦所对的弧;圆内接平行四边形一定是矩形ABCD二、填空题(每小题3分,共24分)11某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况.如表: 节水量/m3 0.2 0.25 0.3 0.4 0.5 家庭数/个 2 4 6 7 1请你估计这400名同学的家庭一个月节约用水的总量大约是_m3.12如图,在中,、分别是、的中点,点在上,是的平分线,若,则的度数是_13设m是一元二次方程x2x20190的一个根,则m2m+1的值为_14在ABC
5、中,tanB,BC边上的高AD6,AC3,则BC长为_15如图,点P是反比例函数y(k0)的图象上任意一点,过点P作PMx轴,垂足为M若POM的面积等于2,则k的值等于_16计算:= 17某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计)则乙回到公司时,甲距公司的路程是_米18函数
6、,其中是的反比例函数,则的值是_.三、解答题(共66分)19(10分)计算:(1)2+3tan30(2)(+2)+2sin6020(6分)如图是图是其侧面示意图(台灯底座高度忽略不计),其中灯臂,灯罩,灯臂与底座构成的可以绕点上下调节一定的角度使用发现:当与水平线所成的角为30时,台灯光线最佳现测得点D到桌面的距离为请通过计算说明此时台灯光线是否为最佳?(参考数据:取1.73)21(6分)如图,在直角坐标系中,以点为圆心,以3为半径的圆,分别交轴正半轴于点,交轴正半轴于点,过点的直线交轴负半轴于点(1)求两点的坐标; (2)求证:直线是的切线22(8分)某区为创建国家义务教育优质均衡发展区,自
7、2016年以来加大了教育经费的投入,2016年该区投入教育经费9000万元,2018年投入教育经费12960万元,假设该区这两年投入教育经费的年平均增长率相同(1)求这两年该区投入教育经费的年平均增长率(2)若该区教育经费的投入还将保持相同的年平均增长率,请你预算2019年该区投入教育经费多少万元23(8分)解方程(1)x2+4x30(用配方法)(2)3x(2x+3)4x+624(8分)我国南宋数学家杨辉在1275年提出的一个问题:“直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步”其大意是:一矩形田地面积为864平方步,宽比长少12步,
8、问该矩形田地的长和宽各是多少步?请用已学过的知识求出问题的解25(10分)解方程(1)x26x70(2)(x1)(x+3)1226(10分)阅读下面内容,并按要求解决问题:问题:“在平面内,已知分别有2个点,3个点,4个点,5个点,个点,其中任意三个点都不在同一条直线上经过每两点画一条直线,它们可以分别画多少条直线?”探究:为了解决这个问题,希望小组的同学们,设计了如下表格进行探究:(为了方便研究问题,图中每条线段表示过线段两端点的一条直线)点数2345示意图直线条数1请解答下列问题:(1)请帮助希望小组归纳,并直接写出结论:当平面内有个点时,直线条数为_;(2)若某同学按照本题中的方法,共画
9、了28条直线,求该平面内有多少个已知点?参考答案一、选择题(每小题3分,共30分)1、A【分析】平均数可以反映一组数据的一般情况、和平均水平,样本的平均数即可估算出总体的平均水平【详解】200名学生的体育平均成绩为40分,我县目前九年级学生中考体育水平大概在40分,故选:A【点睛】本题考查用样本平均数估计总体的平均数,平均数是描述数据集中位置的一个统计量,既可以用它来反映一组数据的一般情况、和平均水平,也可以用它进行不同组数据的比较,以看出组与组之间的差别2、A【分析】由三角形面积公式可求CE的长,由相似三角形的性质可求解【详解】解:如图,过点C作CEAB,CGAC,CHBC,并延长CE交AB
10、于点F,连接AC,BC,CC,点C与ABC的内心重合,CEAB,CGAC,CHBC,CE=CG=CH,SABC=SACC+SACB+SBCC,ACBC=ACCC+BACE+BCCHCE=1,将RtABC平移到ABC的位置,ABAB,AB=AB,AC=AC=4,BC=BC=3CFAB,AB=5,ACBC=ABCF,CF=,ABABCMNCAB,C阴影部分=CCAB=(5+3+4)=5.故选A.【点睛】本题考查了三角形的内切圆和内心,相似三角形的判定和性质,熟练运用相似三角形的性质是本题的关键3、C【分析】根据题意先计算出BD=60-13=47,AE=BE=30,AF=37,则E点为AB的中点,则
11、计算BD:AB和AF:AB,然后把计算的结果与0.618比较,则可判断哪一点最接近线段AB的黄金分割点【详解】解:线段AB=60,AD=13,DE=17,EF=7,BD=60-13=47,AE=BE=30,AF=37,BD:AB=47:600.783,AF:AB=37:60=0.617,点F最接近线段AB的黄金分割点故选:C【点睛】本题考查黄金分割的定义,注意掌握把线段AB分成两条线段AC和BC(ACBC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点其中,并且线段AB的黄金分割点有两个4、A【分析】利用旋转的性质得出四边形A
12、ECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案【详解】把顺时针旋转的位置,四边形AECF的面积等于正方形ABCD的面积等于25,中,故选A【点睛】此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键5、D【解析】根据事件发生的可能性大小判断相应事件的类型即可【详解】A从甲袋中随机摸出1个球,是黄球是不可能事件;B从甲袋中随机摸出1个球,是红球是必然事件;C从乙袋中随机摸出1个球,是红球或黄球是必然事件;D从乙袋中随机摸出1个球,是黄球是随机事件故选:D【点睛】本题考查了必然事件、不可能事件、随机事件的概念必然事件指在一定条件
13、下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件6、B【解析】试题分析:对于反比例函数y=,当k0时,函数图像在一、三象限;当k0时,函数图像在二、四象限.根据题意可得:k=2.考点:反比例函数的性质7、B【分析】把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心【详解】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B【点睛】本题主要考查的是中
14、心对称图形,理解中心对称图形的定义是判断这四个图形哪一个是中心对称图形的关键.8、D【解析】根据中心对称图形的概念判断即可【详解】A、不是中心对称图形;B、不是中心对称图形;C、不是中心对称图形;D、是中心对称图形故选D【点睛】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合9、C【分析】根据对称轴的位置、开口方向、与y轴的交点可对进行判断,根据,转化为代数,计算的值对进行判断即可【详解】解:抛物线开口向下,抛物线对称轴为直线,故正确,又抛物线与y轴交于负半轴,故错误,点C(0,c),点A在x轴正半轴,A ,代入得:,化简得:,又,即,故正确,由可得,当x
15、=1时,即,故正确,所以正确的是,故答案为C【点睛】本题考查了二次函数中a,b,c系数的关系,根据图象得出a,b,c的的关系是解题的关键10、C【分析】根据圆周角定理、垂径定理、圆内接四边形的性质定理判断【详解】在同圆或等圆中,相等的圆周角所对的弧相等,本说法错误;同弧或等弧所对的圆周角相等,本说法正确;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,本说法错误;圆内接平行四边形一定是矩形,本说法正确;故选:C【点睛】本题考查的是命题的真假判断,掌握圆周角定理、垂径定理、圆内接四边形的性质定理是解题的关键二、填空题(每小题3分,共24分)11、130【解析】先计算这20名同学各自家庭一个
16、月的节水量的平均数,即样本平均数,然后乘以总数400即可解答【详解】20名同学各自家庭一个月平均节约用水是:(0.22+0.254+0.36+0.47+0.51)20=0.325(m3),因此这400名同学的家庭一个月节约用水的总量大约是:4000.325=130(m3),故答案为130.【点睛】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可,关键是求出样本的平均数12、100【分析】利用三角形中位线定理可证明DE/BC,再根据两直线平行,同位角相等可求得AED,再根据角平分线的定义可求得DEF,最后根据两直线平行,同旁内角互补可求得EFB的度数【详解】解:在ABC中,D
17、、E分别是AB、AC的中点,DE是ABC的中位线,DEBC,AED=C=80,DEF+EFB=180,又ED是AEF的角平分线,DEF=AED=80,EFB=180-DEF=100故答案为:100【点睛】本题考查三角形中位线定理,平行线的性质定理,角平分线的有关证明能得出DE是ABC中位线,并根据三角形的中位线平行于第三边得出DEBC是解题关键13、2020.【分析】把x=m代入方程计算即可求解【详解】解:把xm代入方程得:m2m20190,即m2m2019,则原式2019+12020,故答案为2020.【点睛】本题考查一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值14、5或1
18、【分析】分两种情况:AC与AB在AD同侧,AC与AB在AD的两侧,在RtABD中,通过解直角三角形求得BD,用勾股定理求得CD,再由线段和差求BC便可【详解】解:情况一:当AC与AB在AD同侧时,如图1,AD是BC边上的高,AD6,tanB,AC3在RtABD中,在RtACD中,利用勾股定理得BC=BD-CD=8-3=5;情况二:当AC与AB在AD的两侧,如图2,AD是BC边上的高,AD6,tanB,AC3在RtABD中,在RtACD中,利用勾股定理得BC=BD+CD=8+3=1;综上,BC=5或1故答案为:5或1【点睛】本题主要考查了解直角三角形的应用题,关键是分情况讨论,比较基础,容易出错
19、的地方是漏解15、-2【分析】利用反比例函数k的几何意义得到|k|=1,然后根据反比例函数所在的象限确定k的值【详解】POM的面积等于1,|k|=1反比例函数图象过第二象限,k0,k=2故答案为:2【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|也考查了反比例函数的性质16、1【解析】试题分析:原式=91=1,故答案为1考点:二次根式的混合运算17、6000【分析】根据函数图象和题意可以分别求得甲乙的速度和乙从与甲相遇到返回公司用的时间,从而可以求得当乙回到公司时,甲距公司的路程.【详解】解:由
20、题意可得,甲的速度为:4000(12-2-2)=500米/分,乙的速度为: =1000米/分,乙从与甲相遇到返回公司用的时间为4分钟,则乙回到公司时,甲距公司的路程是:500(12-2)-5002+5004=6000(米),故答案为6000.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.18、【分析】根据反比例函数的定义知m1-5=-1,且m-10,据此可以求得m的值【详解】y=(m-1)xm15是y关于x的反比例函数,m1-5=-1,且m-10,(m+1)(m-1)=0,且m-10,m+1=0,即m=-1;故答案为:-1【点睛】本题考查了反比例函数的定义,
21、重点是将一般式y=(k0)转化为y=kx-1(k0)的形式三、解答题(共66分)19、3【解析】把三角函数的特殊值代入运算即可【详解】解:原式20、此时台灯光线是最佳【解析】如图,作于,于,于解直角三角形求出即可判断【详解】解:如图,作于,于,于 ,四边形是矩形,在中,在中,此时台灯光线为最佳【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题,属于中考常考题型21、(1),;(2)详见解析【分析】(1)先根据圆的半径可求出CA的长,再结合点C坐标即可得出点A坐标;根据点C坐标可知OC的长,又根据圆的半径可求出CB的长,然后利用勾股定理可求出OB的长,即可
22、得出点B坐标;(2)先根据点坐标分别求出,再根据勾股定理的逆定理可得是直角三角形,然后根据圆的切线的判定定理即可得证【详解】(1),圆的半径为3,点A是x轴正半轴与圆的交点如图,连接CB,则在中,点B是y轴正半轴与圆的交点;(2)在中,则在中,是直角三角形,即又BC是C半径直线BD是C的切线【点睛】本题是一道较简单的综合题,考查了圆的基本性质、勾股定理、圆的切线的判定定理等知识点,熟记各定理与性质是解题关键22、(1)20%;(2)15552万元【分析】(1)设该县投入教育经费的年平均增长率为,根据题意列式计算即可;(2)由(1)可知增长率,列式计算即可.【详解】解:(1)设该县投入教育经费的
23、年平均增长率为,根据题得,解得(舍去)答:该县投入教育经费的年平均增长率为20%(2)因为2018年该县投入教育经费为12960万元,由(1)可知增长率为20%,所以2019年该县投入教育经费为万元答:预算2019年该县投入教育经费15552万元【点睛】本题考查的是一元二次方程的实际应用,能够读懂题意列式计算是解题的关键.23、(1)x12+,x22;(2)x1,x2【解析】(1)原式利用配方法求出解即可;(2)原式整理后,利用因式分解法求出解即可【详解】(1)方程整理得:x2+4x3,配方得:x2+4x+47,即(x+2)27,开方得:x+2,解得:x12+,x22;(2)方程整理得:3x(2x+3)2(2x+3)0,分解因式得:(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024汽车租赁替代销售协议范本
- 花池维修合同范本
- 制药企业合同范本
- 个人租房更改装修合同范本
- 2024年环保垃圾收集运输服务协议
- 制作室外广告牌合同范本
- 2024年家居防盗系统安装服务协议
- 2024年海洋物流服务协议条款详解
- 调度合同范本
- 卡车维修合同范本
- 第一章第三节《氧化还原反应》第一课时高一上学期化学人教版(2019)必修第一册
- 高三政治月考试卷讲评
- 蓝色简约风中国空军成立75周年纪念日
- 2024年全国企业员工全面质量管理知识竞赛题库(含答案)(共132题)
- 知识创业思维与方法智慧树知到答案2024年湖南师范大学
- 无人机全行业保险
- 2023年广东省建筑设计研究院校园招聘笔试参考题库附带答案详解
- 员工人事档案目录
- 迅达SWE30-100K自动扶梯电路分析_图文
- 华东理工大学PPT模板
- 一年级上册语文期中考试试卷分析
评论
0/150
提交评论