2022-2023学年河南省洛阳市偃师市九年级数学第一学期期末教学质量检测试题含解析_第1页
2022-2023学年河南省洛阳市偃师市九年级数学第一学期期末教学质量检测试题含解析_第2页
2022-2023学年河南省洛阳市偃师市九年级数学第一学期期末教学质量检测试题含解析_第3页
2022-2023学年河南省洛阳市偃师市九年级数学第一学期期末教学质量检测试题含解析_第4页
2022-2023学年河南省洛阳市偃师市九年级数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题3分,共30分)1若二次根式在实数范围内有意义,则x的取值范围是AxBxCxDx2某学校要种植一块面积为100 m2的长方形草坪,要求两边长均不小于5 m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是( )ABCD3如图,将命题“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”改写

2、成“已知求证”的形式,下列正确的是( )A已知:在O中,AOB=COD,弧AB=弧CD求证:AB=CDB已知:在O中,AOB=COD,弧AB=弧BC求证:AD=BCC已知:在O中,AOB=COD求证:弧AD=弧BC,AD=BCD已知:在O中,AOB=COD求证:弧AB=弧CD,AB=CD4抛物线()的部分图象如图所示,与轴的一个交点坐标为,抛物线的对称轴是,下列结论是:;方程有两个不相等的实数根;若点在该抛物线上,则,其中正确的个数有( )A1个B2个C3个D4个5如图,ABC的顶点在网格的格点上,则tanA的值为()ABCD6如图,正六边形内接于圆,圆半径为2,则六边形的边心距的长为( )A

3、2BC4D7如图,将RtABC绕直角项点C顺时针旋转90,得到A BC,连接AA,若1=20,则B的度数是( ) A70B65C60D558如图,已知AE与BD相交于点C,连接AB、DE,下列所给的条件不能证明ABCEDC的是()AAEBCABDED9如图,是由一些相同的小正方形围成的立方体图形的三视图,则构成这种几何体的小正方形的个数是()A4B6C9D1210如图,四边形内接于圆,过点作于点,若,则的长度为()AB6CD不能确定二、填空题(每小题3分,共24分)11如图,在中,点在上,且,则_12如图,在直角坐标系中,点,点,过点的直线垂直于线段,点是直线上在第一象限内的一动点,过点作轴,

4、垂足为,把沿翻折,使点落在点处,若以,为顶点的三角形与ABP相似,则满足此条件的点的坐标为_13已知x1是方程x2+ax+40的一个根,则方程的另一个根为_14如图,小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会(只填序号)_越来越长,越来越短,长度不变在D处发现自己在地面上的影子长DE是2米,如果小明的身高为1.7米,那么路灯离地面的高度AB是_米15已知扇形的面积为4,半径为6,则此扇形的圆心角为_度16一个正多边形的每个外角都等于,那么这个正多边形的中心角为_17如图,四边形是的内接四边形,且,点在的延长线上,若,则的半径_18如图,已知O的半径为1,AB,AC是O的两

5、条弦,且ABAC,延长BO交AC于点D,连接OA,OC,若AD2ABDC,则OD_三、解答题(共66分)19(10分)如图,点C在以AB为直径的圆上,D在线段AB的延长线上,且CA=CD,BC=BD(1)求证:CD与O相切;(2)若AB=8,求图中阴影部分的面积20(6分)如图,是线段上-动点,以为直径作半圆,过点作交半圆于点,连接.已知,设两点间的距离为,的面积为.(当点与点或点重合时,的值为)请根据学习函数的经验,对函数随自变量的变化而变化的规律进行探究. (注: 本题所有数值均保留一位小数)通过画图、测量、计算,得到了与的几组值,如下表:补全表格中的数值: ; ; .根据表中数值,继续描

6、出中剩余的三个点,画出该函数的图象并写出这个函数的一条性质;结合函数图象,直接写出当的面积等于时,的长度约为_ _.21(6分)如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD1m,窗高CD1.5m,并测得OE1m,OF5m,求围墙AB的高度22(8分)如图1,在平面内,不在同一条直线上的三点同在以点为圆心的圆上,且的平分线交于点,连接,(1)求证:;(2)如图2,过点作,垂足为点,作,垂足为点,延长交于点,连接若,请判断直线与的位置关系,并说明理由23(8分)如图

7、1,ABC中,AB=AC=4,BAC=,D是BC的中点小明对图1进行了如下探究:在线段AD上任取一点E,连接EB将线段EB绕点E逆时针旋转80,点B的对应点是点F,连接BF,小明发现:随着点E在线段AD上位置的变化,点F的位置也在变化,点F可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF的最小值24(8分)如图

8、,正方形ABCD的边长为2,点E是AD边上的动点,从点A开始沿AD向D运动以BE为边,在BE的上方作正方形BEFG,EF交DC于点H,连接CG、BH请探究:(1)线段AE与CG是否相等?请说明理由(2)若设AE=x,DH=y,当x取何值时,y最大?最大值是多少?(3)当点E运动到AD的何位置时,BEHBAE?25(10分)如图,一次函数的图象与反比例函数的图象相交于、两点,其中点的坐标为,点的坐标为.(1)根据图象,直接写出满足的的取值范围;(2)求这两个函数的表达式;(3)点在线段上,且,求点的坐标.26(10分)关于x的方程x24x2m+20有实数根,且m为正整数,求m的值及此时方程的根参

9、考答案一、选择题(每小题3分,共30分)1、A【分析】根据二次根式被开方数为非负数即可求解.【详解】依题意得2-4x0解得x故选A.【点睛】此题主要考查二次根式有意义的条件,解题的关键是熟知二次根式被开方数为非负数.2、C【详解】由草坪面积为100m2,可知x、y存在关系y=,然后根据两边长均不小于5m,可得x5、y5,则x20,故选 :C3、D【分析】根据命题的概念把原命题写成:“如果.求证.”的形式.【详解】解:“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”,改写成:已知:在O中,AOB=COD.求证:弧AB=弧CD,AB=CD故选:D【点睛】本题考查命题,掌握将命题改写为“如果.

10、求证.”的形式,是解题的关键.4、D【分析】根据二次函数的对称性补全图像,再根据二次函数的性质即可求解.【详解】如图,与轴的一个交点坐标为,抛物线的对称轴是,实验求出二次函数与x轴的另一个交点为(-2,0)故可补全图像如下,由图可知a0,c0,对称轴x=1,故b0,错误,对称轴x=1,故x=-,,正确;如图,作y=2图像,与函数有两个交点,方程有两个不相等的实数根,正确;x=-2时,y=0,即,正确;抛物线的对称轴为x=1,故点在该抛物线上,则,正确;故选D【点睛】此题主要考查二次函数的图像,解题的关键是熟知二次函数的对称性.5、A【分析】根据勾股定理,可得BD、AD的长,根据正切为对边比邻边

11、,可得答案【详解】解:如图作CDAB于D,CD=,AD=2,tanA=,故选A.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边6、D【分析】连接OB、OC,证明OBC是等边三角形,得出即可求解【详解】解:连接OB、OC,如图所示:则BOC=60,OB=OC,OBC是等边三角形,BC=OB=2,OMBC,OBM为30、60、90的直角三角形,故选:D【点睛】本题考查了正多边形和圆、正六边形的性质、垂径定理、勾股定理、等边三角形的判定与性质;熟练掌握正六边形的性质,证明三角形是等边三角形和运用垂径定理求出BM是解决问题的关键7、

12、B【分析】根据图形旋转的性质得AC=AC,ACA=90,B=ABC,从而得AAC=45,结合1=20,即可求解【详解】将RtABC绕直角项点C顺时针旋转90,得到A BC,AC=AC,ACA=90,B=ABC,AAC=45,1=20,BAC=45-20=25,ABC=90-25=65,B=65故选B【点睛】本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键8、D【分析】利用相似三角形的判定依次判断即可求解【详解】A、若AE,且ACBDCE,则可证ABCEDC,故选项A不符合题意;B、若,且ACBDCE,则可证ABCEDC,故选项B不符合题意

13、;C、若ABDE,可得AE,且ACBDCE,则可证ABCEDC,故选项C不符合题意;D、若,且ACBDCE,则不能证明ABCEDC,故选项D符合题意;故选:D【点睛】本题考查相似三角形的判定,熟知相似三角形的判定方法是解题的关键,判定时需注意找对对应线段.9、D【分析】根据三视图,得出立体图形,从而得出小正方形的个数【详解】根据三视图,可得立体图形如下,我们用俯视图添加数字的形式表示,数字表示该图形俯视图下有几个小正方形则共有:1+1+1+2+2+2+1+1+1=12故选:D【点睛】本题考查三视图,解题关键是在脑海中构建出立体图形,建议可以如本题,通过在俯视图上标数字的形式表示立体图形帮助分析

14、10、B【分析】首先根据圆内接四边形的性质求得A的度数,然后根据解直角三角形的方法即可求解【详解】四边形ABCD内接于O,A18012060,BHAD,BHAHtan60=,故选:B【点睛】本题考查了圆内接四边形及勾股定理的知识,解题的关键是熟知解直角三角形的方法二、填空题(每小题3分,共24分)11、 【分析】在RtABC中,根据,可求得AC的长;在RtACD中,设CD=x,则AD=BD=8-x,根据勾股定理列方程求出x值,从而求得结果【详解】解:在RtABC中,AC=BC=1设CD=x,则BD=8-x=AD,在RtACD中,由勾股定理得,x2+12=(8-x)2,解得x=2CD=2,AD=

15、5,故答案为:1;【点睛】本题考查解直角三角形,掌握相关概念是解题的关键12、或【分析】求出直线l的解析式,证出AOBPCA,得出,设AC=m(m0),则PC=2m,根据PCAPDA,得出 ,当PADPBA时,根据,得出m=2,从而求出P点的坐标为(4,4)、(0,-4),若PADBPA,得出,求出,从而得出,求出,即可得出P点的坐标为【详解】点A(2,0),点B(0,1),直线AB的解析式为y=-x+1直线l过点A(4,0),且lAB,直线l的解析式为;y=2x-4,BAO+PAC=90,PCx轴,PAC+APC=90,BAO=APC,AOB=ACP,AOBPCA,设AC=m(m0),则PC

16、=2m,PCAPDA,AC=AD,PC=PD,如图1:当PADPBA时,则,则,AB=,AP=2,m=2,(负失去)m=2,当m=2时,PC=4,OC=4,P点的坐标为(4,4),如图2,若PADBPA,则,则,m=,(负舍去)m=,当m=时,PC=1,OC=,P点的坐标为(,1),故答案为:P(4,4),P(,1)【点睛】此题考查了一次函数的综合,用到的知识点是相似三角形和全等三角形的判定与性质、勾股定理、一次函数等,关键是根据题意画出图形,注意点P在第一象限有两个点13、4【分析】根据根与系数的关系:即可求出答案【详解】设另外一根为x,由根与系数的关系可知:x4,x4,故答案为:4【点睛】

17、本题考查根与系数,解题的关键是熟练运用根与系数的关系,本题属于基础题型14、;5.95.【解析】试题解析:小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会越来越长;CDAB,ECDEBA,即,AB=5.95(m)考点:中心投影15、1【分析】利用扇形面积计算公式:设圆心角是n,圆的半径为R的扇形面积为S,则由此构建方程即可得出答案【详解】解:设该扇形的圆心角度数为n,扇形的面积为4,半径为6,4, 解得:n1该扇形的圆心角度数为:1故答案为:1【点睛】此题考查了扇形面积的计算,熟练掌握公式是解此题的关键16、60【分析】根据题意首先由多边形外角和定理求出正多边形的边数n,再由正

18、多边形的中心角=,即可得出结果【详解】解:正多边形的边数为,故这个正多边形的中心角为.故答案为:60.【点睛】本题考查正多边形的性质和多边形外角和定理以及正多边形的中心角的计算方法,熟练掌握正多边形的性质,并根据题意求出正多边形的边数是解决问题的关键17、【分析】根据圆内接四边形的性质,证得是等边三角形,再利用三角函数即可求得答案.【详解】如图,连接BD,过点O作OFBD于F,四边形是的内接四边形,且AB=AD=8,DCE=60,DCE=A=60,BOD=2A=120,是等边三角形,AB=AD=BD= 8,OB=OD,OFBD,BOF=BF=,.故答案为:.【点睛】本题考查了圆内接四边形的性质

19、,等边三角形的判定和性质,三角形函数的应用等知识,运用“圆内接四边形的任意一个外角等于它的内对角”证得A=60是解题的关键.18、【分析】可证AOBAOC,推出ACO=ABD,OA=OC,OAC=ACO=ABD,ADO=ADB,即可证明OADABD;依据对应边成比例,设OD=x,表示出AB、AD,根据AD2=ABDC,列方程求解即可【详解】在AOB和AOC中,ABAC,OBOC,OAOA,AOBAOC(SSS),ABOACO,OAOA,ACOOAD,ADOBDA,ADOBDA,设ODx,则BD1+x,OD,AB,DCACADABAD,AD2ABDC,()2(),整理得:x2+x10,解得:x或

20、x(舍去),因此AD,故答案为【点睛】本题考查了圆的综合题、全等三角形的判定和性质、相似三角形的判定和性质、比例中项等知识,解题的关键是灵活运用所学知识解决问题,利用参数解决问题是数学解题中经常用到的方法三、解答题(共66分)19、(1)见解析; (2)【分析】(1)连接OC,由圆周角定理得出ACB=90,即ACO+BCO=90,由等腰三角形的性质得出A=D=BCD,ACO=A,得出ACO=BCD,证出DCO=90,则CDOC,即可得出结论;(2)证明OB=OC=BC,得出BOC=60,D=30,由直角三角形的性质得出CD=OC=4,图中阴影部分的面积=OCD的面积-扇形OBC的面积,代入数据

21、计算即可【详解】证明:连接OC,如图所示:AB是O的直径,ACB=90,即ACO+BCO=90,CA=CD,BC=BD,A=D=BCD,又OA=OC,ACO=A,ACO=BCD,BCD+BCO=ACO+BCO=90,即DCO=90,CDOC,OC是O的半径,CD与O相切;(2)解:AB=8,OC=OB=4,由(1)得:A=D=BCD,OBC=BCD+D=2D,BOC=2A,BOC=OBC,OC=BC,OB=OC,OB=OC=BC,BOC=60,OCD=90,D=90-60=30,CD=OC=4,图中阴影部分的面积=OCD的面积-扇形OBC的面积=44-=8-【点睛】本题考查了切线的判定、圆周角

22、定理、等腰三角形的判定与性质、等边三角形的判定与性质、含30角的直角三角形的性质、扇形面积公式、三角形面积公式等知识;熟练掌握切线的判定和圆周角定理是解题的关键20、(1)3.1,9.3,7.3;(2)见解析;(3)或.【分析】D(1)如图1,当x=1.5时,点C在C处,x=2.0时,点C在C1处,此时,D C=DC,则,同理可求b、c;(2)依据表格数据描点即可;(3)从图象可以得出答案.【详解】解:如图当x=1.5时,点C在C处,x=2.0时,点C在C1处D C=DC同理可得:b=9.3,c=7.3 ( 允许合理的误差存在) 如图由函数图像可知,当时,随增大而增大,当时,随增大而减小;当时

23、,的最大值为.由函数图像可知,或【点睛】本题考查的是二次函数综合应用,确定未知点数据、再描点、准确画出函数图像是解答本题的关键.21、1m【分析】首先根据DO=OE=1m,可得DEB=15,然后证明AB=BE,再证明ABFCOF,可得,然后代入数值可得方程,解出方程即可得到答案【详解】解:延长OD,DOBF,DOE=90,OD=1m,OE=1m,DEB=15,ABBF,BAE=15,AB=BE,设AB=EB=x m,ABBF,COBF,ABCO,ABFCOF,解得:x=1经检验:x=1是原方程的解答:围墙AB的高度是1m【点睛】此题主要考查了相似三角形的应用,解决问题的关键是求出AB=BE,根

24、据相似三角形的判定方法证明ABFCOF22、(1)见解析 (2)见解析【分析】(1)根据角平分线的定义和圆周角定理的推论,即可得到结论;(2)连接,过作交的延长线于,由为直径,得,由,得,进而可得,即可得到结论.【详解】(1)平分,;(2)直线与相切,理由如下:连接,过作交的延长线于,为直径,为的切线【点睛】本题主要考查垂径定理和圆的切线的判定定理,掌握圆的切线的判定定理,是解题的关键.23、(1),证明见解析;(2)成立,证明见解析;(3)AF的最小值为1【分析】(1)结合题意,根据旋转的知识,得, ,再根据三角形内角和性质,得;结合AB=AC=1,D是BC的中点,推导得,即可完成解题;(2

25、)由(1)可知:EB=EF=EC,得到B,F,C三点共圆,点E为圆心,得BCF=BEF=10,从而计算得,完成求解;(3)由(1)和(2)知,CFAB,因此得点F的运动路径在CF上;故当点E与点A重合时,AF最小,从而完成求解.【详解】(1)将线段EB绕点E逆时针旋转80,点B的对应点是点F, ,即AB=AC=1,D是BC的中点,, , (2)如图,连接BE、EC、BF、EF由(1)可知:EB=EF=ECB,F,C三点共圆,点E为圆心BCF=BEF=10, ,(1)中的结论仍然成立(3)由(1)和(2)知,点F的运动路径在CF上如图,作AMCF于点M点E在线段AD上运动时,点B旋转不到点M的位

26、置故当点E与点A重合时,AF最小此时AF1=AB=AC=1,即AF的最小值为1【点睛】本题考查了旋转、等腰三角形及底边中线、垂直平分线、全等三角形、三角形内角和、平行线、圆心角、圆周角的知识;解题的关键是熟练掌握等腰三角形、旋转、垂直平分线、平行线、圆心角和圆周角的知识,从而完成求解24、(1)AE=CG,见解析;(2)当x=1时,y有最大值,为;(3)当E点是AD的中点时,BEHBAE,见解析.【解析】(1)由正方形的性质可得AB=BC,BE=BG,ABC=EBG=90,由“SAS”可证ABECBG,可得AE=CG;(2)由正方形的性质可得A=D=FEB=90,由余角的性质可得ABE=DEH,可得ABEDEH,可得,由二次函数的性质可求最大值;(3)当E点是AD的中点时,可得AE=1,DH=,可得,且A=FEB=90,即可证BEHBAE【详解】(1)AE=CG,理由如下:四边形ABCD,四边形BEFG

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论