




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数据统计方法与临床试验方案511统计在新药临床试验中的重要作用医药产品的有效性和安全性最终应当由按照GCP原则实施的临床试验来确证。在临床试验的设计和分析中,统计学家起着必不可少的重要作用。GCP、GMP、GLP、GRP和GVP都与统计有关。统计学是一门处理来自群体或个体的大量资料的科学,也是处理资料中变异性的科学和艺术,其目的在于取得可靠的结果。例如,一个医生偶然发现一例患偏头痛病人在喝了橙汁以后感觉有所改善,但这并不是说从这单一个病例观察就可以认为橙汁是治疗偏头痛的有效方法。医生需要统计学资料证明,是否有一组病人在服橙汁后报告症状改善者比采用其他治疗后更多。又如一个每天吸烟50支且嗜酒的人
2、活了95岁并健康良好,但人们不能相信他的习惯能导致健康和长寿。个体对疾病的敏感性变异很大。要研究这些问题,就应当研究不同生活习惯的人群组的发病率和死亡率;也就是说应当进行统计学研究。收集数据、并用统计图表或简单统计量来描述资料的特征称之为描述性统计。但统计学的任务远不止于此,统计学可以通过仔细制订试验计划来提高数据质量;统计推断方法则是从所研究问题的大量数据中得出结论的主要客观手段。应当明白,统计学是在收集、归类、分析和解释大量数据的过程中完成使命的。如果在试验设计阶段不考虑统计原则,所获结果的统计分析不管做的如何精巧都挽救不了一个设计糟糕的临床研究这是一个必须执行的基本原则。表8可能导致临床
3、试验失败的原因可以控制的因素较难控制的因素研究计划要解决的问题目标目标人群研究的顺序性研究人员选择试验设计试验假设随机化盲法试验对象的入选/排除标准受试者基线值变异剂量选择终点指标测定样本大小数据分析方法结果的解释操作性变量入选速度缓慢中途退出受试者的依从性执行错误不严格遵循剂量方案入选了不合格受试者试验过程中合并用药测量的变异编码错误在新药研制过程中,按科学原则进行的临床试验是评价一种新治疗方法的有效性和安全性的惟一可靠的基础。一个临床试验,如果不能恰当地评价试验药物的安全性和/或效性,不能提供关于新药的最好使用方式的充分信息或者提供了误导信息,因而不能对药物的研制、管理、上市和安全有效地使
4、用做出有益贡献,那么这就是一个失败的临床试验。可能导致临床试验失败的原因很多,有些原因是可以控制的,有些则是较难控制的。其中试验设计对于临床试验的成功与否起着极其重要的作用。试验假设(阳性对照)选择不当,随机化及盲法不规范,入选/排除标准过严或过宽,受试者基线值变异大,药物剂量选择不当,终点指标选择及测定时间不妥,样本数太小,数据分析方法不恰当都可能导致临床试验失败(表8)。GCP对生物统计学的要求包括四个方面:统计学设计,统计分析计划,临床和统计学报告,以及数据处理。与临床试验其他专业人员合作的临床试验统计人员的作用和责任是确保在支持新药研制的临床试验中能恰当地应用统计原则。512统计学与试
5、验设计临床试验按其目的大体可分为:验证性(Confirmatory)”试验和探索性ploratory)”试验,验证性试验是控制良好的试验,总是预先定义与试验目的直接有关的关键假设,并且在试验完成后对此进行检验。验证性试验必须提供疗效和安全性的可靠证据。新药临床试验中大部分是确认性试验。但一个临床试验常具有验证性和探索性两方面。对于每一个支持上市申请的临床试验,所有关于设计、实施和统计分析的要点应当于试验开始前在试验方案中写明。试验方案中的统计学设计包括:试验设计,样本大小的确定和为避免偏差而采用的技术。5.1.2.1平行组设计(Paralleldesign)验证性试验的最常见设计是平行组设计。
6、受试者被随机分配到两个(或多个)组中的一个,每个组接受不同的治疗。治疗包括一个或几个剂量的研究产品,以及一个或多个对照(如安慰剂和/或阳性对照)。这种设计最有效,其假定比其他设计简单,有明确的有效性结果,完成研究时间较短。但是,这种设计需要较大的样本,有较大的受试者变异,比较复杂。试验的某些特点会使结果的分析和解释复杂化,如协变量问题、在一段时间内的重复多次测定、设计因子之间的相互作用、违反设计等等。5.1.2.2交互设计(Crossoverdesign)在交叉设计中,每例受试者被随机分配到两个或多个治疗序列中的一个,其自身在治疗比较中作为对照。这个简单设计的吸引力在于它减少了受试者例数。在最
7、简单的2x交叉设计中,受试者按随机顺序在两个连续的治疗周期(间隔一个洗脱期)中分别接受两种治疗。这种设计可以扩大到对象在n(2)个周期接受n种不同治疗。交叉设计的优点是所需受试者数较小,消除了受试者间变异。但是,除了试验时间较长、序列效应和周期效应需作分析以外,交叉设计存在许多可能会使其结果无效的问题,主要是可能带入延期(Carryover)效应。在2x2设计中,由于缺少把握度(power),统计学上不能从治X周期相互作用项来鉴别延期效应。使用交叉设计时很重要的是避免延期效应。要做到这一点,在设计时必须对疾病和新药有足够的认识。所研究的疾病应当是慢性病且病情稳定;药物的作用在治疗周期内应当充分
8、展现。洗脱期要足够长,以使药物的作用完全消退。交叉设计要注意的其他问题还有受试者出组造成的分析和解释的复杂性;潜在的延期效应可导致对发生在后一治疗周期的不良事件认定的难度。通常2x2交叉设计用于证明同一药物两种制剂的生物等效性试验。在这一特例中,受试者是健康志愿者。只要洗脱期足够长,延期效应不可能发生。但是,在试验中仍要在每个治疗周期开始时进行测定,没有检测到药物即可确认没有延期效应。5.1.2.3析因设计(Factorialdesign)析因设计通过不同的治疗组合可同时评价两个或多个治疗。最简单的例子是2x2析因设计,受试者被随机分配到两种治疗(A,B)的4种可能组合中的一个:A,B,AB,
9、无A无B。这一设计在多数情况下系用于检查A与B的相互作用的特殊目的。如果根据主效应计算样本数,统计检验可能缺乏把握度检测相互作用。如果该设计用来检查A和B的联合作用,特别是一起使用两种治疗时,要特别注意样本数的问题。析因设计的另一重要用途是确定同时使用治疗C和D的剂量-反应特征。设C有m个剂量水平(通常包括零剂量、安慰剂),治疗D有n个剂量水平,那么完全析因设计包含了mxn个治疗组,每个接受不同剂量的C、D组合。反应面(responsesurface)的结果估算有助于鉴别合适的临床使用剂量组合。5124多中心临床试验多中心临床试验是一种实践上可被接受、且更加有效地评价新药的方法。它的优点是可以
10、在合理的时间内招募足够多的受试者,而且多中心临床试验为其研究结论的普遍性提供了良好的基础。一个多中心临床试验要成功,必须采用同样的试验方案并严格按此实施临床试验,需要有尽可能完善的实施临床试验的标准化操作程序(SOP)。样本大握度的计算通常是假定各中心所比较的治疗差异是同样数量的无偏差估计,多中心试验应当避免各中心招募的受试者人群特征变化过大以及样本量过小的中心,以降低治疗效果的不同权重估算的差异。每个中心必须有一个主要研究人员负责本中心的研究工作符合设计要求,试验前集中对各中心人员进行必要的培训,实施试验过程中的质量控制。多中心研究中,研究人员可能从一个医院入选对象,也可能一个研究人员从几个
11、协作医院入选受试者。因此,试验方案中应该对中心有明确的定义(如指研究人员、医院或地区),多数场合中心以研究人员来限定。如果每个中心有相当数量的受试者,在分析多中心研究的主要治疗效应时,要考虑中心间的均匀性。513临床试验中的有关考虑5131避免偏差的技术(l)育法采用盲法技术是为了防止由于对于治疗的了解而引起的有意识和无意识的在实施和评价临床试验中的偏差。因此,盲法的基本目的是在发生偏差的机会过去之前防止识别接受的是何种治疗。单盲试验受试者或研究人员/工作人员一方不知道所接受治疗。双盲试验受试者和参加临床试验或临床评价的研究人员或申办者方工作人员均不知道也不能识别对象接受了何种治疗的称为双盲试
12、验。在试验实施过程中一直保持盲态。只有在试验结束、完成数据清理、数据已达到可以接受水平并且锁定后方可由指定人员揭盲。要达到理想的双盲会遇到一些问题:如完全不同的治疗(手术和药物);两种药物剂型不同,而改变剂型如胶囊可能会引起药代动力学和/或药效动力学特征的改变,从而需要确定制剂的生物等效性;两种制剂的给药方案可能不同,等等。在这种情况下,可采用双模拟(double-dummy)技术。即为每一种制剂,如A、B,准备一个一模一样的安剂,受试者接受A(活性)+B(安慰剂)或A(安慰剂)+B(活性)。但是,由于明显的治疗效应,某些双盲临床试验仍会遇到问题。在这种情况下,对研究人员和有关人员加盲可改善盲
13、法,即所谓三盲试验。(2)随机化随机化为在临床试验中受试者接受某种治疗引入了审慎的机遇成分。它为以后的数据分析提供了一个坚实的统计基础。随机化所产生的治疗组,基线中已知和未知预后因子(Prognosticfactor)的分布相仿。随机化与盲法相结合,会大大有助于避免在指定治时由于可预见性所引起的选择和分配受试者的可能偏差。与无限制的随机相比,区组随机有两个优点:有助于增加治疗组间的可比性(尤其是受试者特征随时间可能变化时),和保证治疗组有几乎相同的受试者数。但要注意区组长度不宜过长也不宜过短,过长可能会产生不平衡,过短则会使区组末段的分配有可预见性。多中心试验的随机化程序应当以中心为单位。各个
14、中心有各自的随机表,但应该是完整的区组。表9影响样本大小的因素因素对样本大小的影响治疗组数目公式计算的是每个组所需要的例数结果变量的测定连续变量或(转化为)两分变量预期受试者随访时间随访时间长则事件发生率高,对给定的a、B,所需例数较少备择假设双侧或单侧可检测到的治疗差异必须符合实际。差异大则所需例数少所定的I类II类错误通常取a0.05也并不证明两治疗同样有效,差异可能实际上存在,只是现有数据不足以证明它存在。统计显著性并不等同于临床重要性,一个10万人的试验中,1的反应率差异在5水平是显著的,但在一个20人的试验中40的差异在统计上也是不显著的。因此,临床的意义必须用差异的大小,即可信限来
15、评价。双侧检验和单侧检验:假设治疗差异可以发生在任一方向时,为双侧检验。双侧检验的零假设为pa=pb;备择假设为palpbo如果在试验之前就确定治疗A不可能差于治疗B,为单侧检验。其零假设为|ja=|jb;备择假设为paMbo此时显著性检验评价A好于B或A相当于B的证据。若结果是A比B差,便归于机遇,因为A不可能差于B。结果是单侧检验的P值为双侧检验的一半。也就是说,单侧检验比双侧检验容易拒绝零假设。采用单侧检验应该有足够的依据。如果试验设计中决定用单侧检验,在结果表示时要注意一般统计软件计算的都是双侧检验的P值。5.3.33可信限的估算显著性检验只告诉我们一个治疗比另一个好的证据的强度,并没
16、有告诉我们好多少。因此,显著性检验并不是分析的终结,还应运用统计估算方法,如可信限估算治疗改善的量。计算可信限时,应注意被分析变量的统计分布;标准误和可信限的计算方法应该写明。记住必须提供治疗效应大小的统计估算、显著性水平和可信区间。100(1a)%可信区间,正态分布估算值可表示为估算值+Na/2xSE,估算值+(N1-a/2xSE);差值如呈t分布时,可表示为x1-x2-(t1-a/2xSEdiff),x1-x2+(t1-a/2xSEdiff)等。53.4对象的基线水平的组间比较对治疗组的疗效评价只有当各组受试者的基线特征具有可比性时才是有效的。通常,随机化可以提供充分的可比性。但是,随机化
17、并不能绝对保证可比性。有时候组间的基线水平可能会有差异。这种差异对治疗比较的影响应当采用其他程序消除。535调节显著性和可信限水平许多情况都可能产生多重性:例如多个终点/主要变量(如血压记录卧位或坐位的收缩压和舒张压;心肌梗死预防试验中的各种原因死亡率和心肌梗死发病率),治疗的多重比较(几个治疗组间比较或试验药物的几个剂量组),及不同时间点的多次测定和中期分析等。存在多重性时,检验主要假设的次数增加,产生I类错误的机会就会变大。分析数据时可能有必要对五类错误进行控制和调节。首先,最好能避免或减少多重性的产生,如从多个主要变量中鉴别出关键的主要变量(如血压记录取卧位舒张压为主要变量;心肌梗死预防
18、试验取死亡率为主要变量);对反复测定则采用一个综合测量指标如曲线下面积。多重比较的常用统计方法有Bonferroni方法、Holm法和Hochberg方法。Bonferroni方法是一个保守的方法,对于成对比较,它调节P值以控制总的I类误差率。Hochberg方法比另两种方法更有效,它只需控制最大的P值小于显著性水平。多个终点的a调节用Bonferroni方法和Hochberg方法。536亚组、相互作用和协变量除了治疗以外,主要变量常与其他影响系统相关。主要变量可能与协变量如年龄和性别有关;或在受试者亚组之间可能存在差异,如多中心试验中在不同中心接受治疗。在某些情况下,调节协变量影响或亚组效应
19、是所计划的分析的一个必要部分。要特别注意中心的影响和主要变量的基线测量值的作用。不要在主分析中对随机化以后测定的协变量进行调节,因为这些测定可能受治疗的影响。此外,治疗效果本身也可能随亚组或协变量改变。疗效可能随年龄而下降,或在具有某一特殊预后因子的受试者中增大。这类相互作用在某些情况下是可以预见的,或具有特殊的意义(如老年病学),因此,一个亚组分析或包括相互作用项的统计模型是所计划的验证性分析的一个部分。对于定量反应变量,多元回归是最常用的统计调节方法,有时也称协方差分析。对于定性反应,可以应用多元Lgistic模型。537评价安全性和耐受性5371评价范围一个药物的有用性总是在风险和效益之
20、间的平衡。在所有临床试验中,安全性和耐受性评价是重要内容之一。在临床研究早期阶段,这类评价带有探索性,仅注意毒性的表达方式;在较后阶段,则是在大样本对象中更全面地确定药物的安全性和耐受性特征。后期的对照临床试验是以一种无偏倚方式揭示任何新的不良反应的重要手段,尽管此类试验的把握度有限。5372变量选择和数据收集在临床试验中,选择评价药物安全性和耐受性的方法和测定取决于一系列因素:药物不良反应的知识,药物非临床研究和早期临床试验以及重要的药效学/药代动力学特征资料,给药方案,被研究对象和研究持续时间。安全性和耐受性的主要数据通常包括临床化学和血液学的实验室测试(如WBC、SGPT),生命指征和体
21、检(如血压、ECG),临床不良事件(疾病、体征和综合症)。发生严重不良事件和因不良事件中断治疗对于注册是特别重要的数据。临床试验中使用共同的不良事件编码词典特别重要。这种词典的结构提供了在3个不同的水平总结不良事件数据的可能性:系统-器官分类,标准术语(preferredterm)和包括术语(ineludedterm)。通常,不良事件按标准术语分类总结,相同系统-器官分类的标准术语在数据的描述性报告中可以放在一起。现在常用的有世界卫生组织的疾病和有关健康问题的国际统计分类ICD10,和美国的COSTART5373评价的受试者和数据报告安全性和耐受性评价中,所总结的受试者通常至少曾接受过一个剂量
22、研究药物。要尽可能全面地从这些受试者中收集安全性和耐受性变量,包括不良事件的种类、严重程度、开始时间和持续时间,以及处理方法和结果。评价时要注意所有安全性和耐受性变量。所有不良事件,不管它们是否与治疗相关,都应当报告。实验室测定值的单位和正常范围应有明确定义。使用的毒性分级标度(toxicitygradingscale)应当预先说明。通常一个特定不良事件的发生率表示为经历该事件受试者数相对于处于危险的受试者数的率。但是,根据需要,被暴露的受试者数或暴露程度(用人-年表示)可以作为分母。不管其目的是为了估算危险度还是在治疗组间进行比较,应该在方案中明确定义,这在计划长期治疗并预期会有相当比例的治
23、疗中止或死亡时特别重要。在这种情况下,应当考虑采用生存分析(SurvivalAnalysis),计算不良事件累积率以避免低估危当存在明显的症状或综合征基线噪声时,估算不良事件危险度的一个办法是采用治疗引发(treatmentemergent)概念,只记录与治疗前基线相比时原先没有的不良事件或症状变重的不良事件。减少基线噪声的其他办法还有:不计轻度的不良事件,一个事件在重复随访中观察到才计算。不论采用何种方法,都须在方案中说明理由。5374安全性的统计评价在大多数临床试验中,安全性和耐受性结论的陈述多采用描述性统计方法,辅以有助于解释的可信区间计算。用图可表示治疗组内不良事件的类型。计算P值有时
24、也是有用的:可以评价一个事件的差异,或是在大量安全性和耐受性变量中突出值得进一步注意的差别。计算P值对于总结实验室数据特别有用。实验室数据可进行两种分析:评价均值的定量分析和计算高于或低于某一个阈值的数目定性分析。数据录入及分析的质量控制临床试验中的质量保证(Qualityassuranee)是指收集、处理和分析研究数据的方法和手段,目的在于维护和加强数据的可靠性和有效性。因此,数据管理应当有完善和有效的标准操作程序(SOP),用于数据管理和统计的计算机软件应当可靠。质量保证系统的具体内容包括:编辑程序检查记录表格数据的准确性和完整性;重复实验室测定,检查其重视性(测定方法的有效性);两次输人
25、数据,检查发现数据录入过程中可能的错误;在多中心试验中对不同中心进行分析,检查试验执行中的偏差。表12临床试验的质量保证程序临床研究人员对已完成记录表格目视检查无效数据、缺失数据和错误数据(手工监控)同步数据处理(数据输入)重复数据编码和数据输入(数据检查)利用计算机对键入数据编辑检查无效编码或缺失数据数据问题表(Query)关于数据收集情况的定期报告重复实验室测定,测定方法的质量控制多次独立读片(ECGs,X线片,组织切片),连续3次血压测定等独立评价死亡病例原因分级和死亡记录提交加盲的重复样本或记录,检查测定或阅读程序的重现性关于对于临床试验方案依从性的定期报告多中心试验中,定期的进展报告
26、比较各临床点的完成情况,检查数据质量或完整性,其反映在错过随访访次数、退出试验例数及原因、有问题的记录表格数,等重新编写数据核查程序或分析程序,检查程序的准确性或程序文件的质量研究数据的疗效中期分析,可用于揭示所收集数据的不足之处和不一致性521同步数据输入同步数据输人是质量保证的前提。从数据在临床点生成到录入计算机之间的时间间隔过大,会失去在试验进行期间进行数据编辑和分析评价数据质量的大部分价值,造成无法弥补的缺失或错误。理想的数据输人是数据产生和输人在同一天进行,或间隔很短。但是,数据的计算机在线输入目前在我国还不具备必要的物质和人力条件。目前在我国可行的是,在受试者检查时完成纸张表格的填写,然后在各临床点上机,再将电子数据转
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药品经营质量管理制度
- 药品采购预警管理制度
- 药店办公日常管理制度
- 药店服务卫生管理制度
- 莆田校外托管管理制度
- 薪酬福利职级管理制度
- 设备升级改造管理制度
- 设备定期检定管理制度
- 设备日常使用管理制度
- 设备生产人员管理制度
- 2025年中式烹调师(技师)理论考试笔试试题(50题)含答案
- DB61∕T 1914-2024 煤矿安全风险分级管控和隐患排查治理 双重预防机制建设与运行规范
- 种植二期手术护理配合
- 行政事业单位内部控制工作中存在的问题与遇到的困难
- 人工智能在医疗器械中的应用-全面剖析
- 智慧农旅综合体项目可行性研究报告(参考范文)
- 2025年标准离婚协议书范本完整版
- 四川2024年11月四川南充市人民政府办公室遴选(考调)工作人员3人国家公务员考试消息笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2025年云南省保山市隆阳区小升初模拟数学测试卷含解析
- 2024年郑州市公安机关招聘警务辅助人员笔试真题
- 火灾解封申请书
评论
0/150
提交评论