版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、(第一课时)主讲人:光明书院 刘诗婷深圳市新课程新教材高中数学在线教学9.2.3总体集中趋势的估计从甲、乙、丙三个厂家生产的同一种耐用家电产品中,各抽取8件产品,对其使用寿命进行跟踪调查,其结果如下:(单位:年)甲: 3,4,5,6,8,8,8,10; 乙:4,6,6,6,8,9,12,13;丙:3,3,4,7,9,10,11,12.问题 三家广告中都称其产品的使用寿命为8年,利用初中所学的知识,你能说明为什么吗?情境引入提示:三个产家是从不同角度进行了说明,以宣传自己的产品。其中甲:众数为8年 ,乙的平均数是8年,丙:中位数为8年。新知梳理知识点一众数、中位数、平均数1.众数:一组数据中出现
2、次数 的数.2.中位数:把一组数据按 的顺序排列,处在 位置的数(或中间两个数的 )叫做这组数据的中位数.即第50百分位数.3.平均数:一组数据的_除以数据的个数所得到的数.最多从小到大(或从大到小)中间平均数 通过简单的随机抽样,获得100户居民用户的月均用水量的数据(单位:t)9.0 13.6 14.9 5.9 4.0 7.1 6.4 5.4 19.4 2.0 2.2 8.6 13.8 5.4 10.2 4.9 6.8 14.0 2.0 10.5 2.1 5.7 5.1 16.8 6.0 11.1 1.3 11.2 7.7 4.9 2.3 10.0 16.7 12.0 12.4 7.8 5
3、.2 13.6 2.6 22.4 3.6 7.1 88 25.6 3.2 18.3 5.1 2.0 3.0 12.0 22.2 10.8 5.5 2.0 24.3 9.9 3.65.6 4.4 7.9 5.1 24.5 6.4 7.5 4.7 20.5 5.5 15.7 2.6 5.7 5.5 6.0 16.0 2.4 9.5 3.7 17.03.8 4.1 2.3 5.3 7.8 8.1 4.3 13.3 6.8 1.3 7.0 4.9 1.8 7.1 28.0 10.2 13.8 17.9 10.1 5.54.6 3.2 21.6 例1 利用9.2.1节中100户居民的月均用水量的调查数据
4、,计算样本数据的平均数和中位数,并据此估计全市居民用户月均用水量的平均数和中位数.解:根据样本平均数的定义,可得即100户居民的月均用水量的平均数为8.79t.将样本数据按从小到大排序,得第50个数和51个数分别是6.4,6.8,用中位数的定义,可得 ,即100户居民的月均用水量的中位数是6.6t.据此估计全市居民用户的月均用水量约为8.79t,其中中位数约为6.6t.思考:小明用统计软件计算了100户居民用水量的平均数和中位数。但在录入数据时,不小心把一个数据7.7录成了77.请计算录入数据的平均数和中位数,并与真实的样本平均数和中位数作比较.哪个量的值变化更大?你能解释其中的原因吗?77因
5、为样本平均数与每一个样本数据有关,样本中的任何一个数据的改变都会引起平均数的改变;但中位数只利用了样本数据中间位置的一个或两个值,并未利用其它数据,所以不是任何一个样本数据的改变都会引起中位数的改变.因此,与中位数比较,平均数反映出样本数据中的更多信息,对样本中的极端值更加敏感.课堂引入跟踪训练1在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如表所示:成绩(单位:m)1.501.601.651.701.751.801.851.90人数23234111分别求出这些运动员成绩的众数、中位数与平均数.成绩(单位:m)1.501.601.651.701.751.801.851.90人数23
6、234111解在17个数据中,1.75出现了4次,出现的次数最多,即这组数据的众数是1.75.上面表里的17个数据可看成是按从小到大的顺序排列的,其中第9个数据1.70是最中间的一个数据,即这组数据的中位数是1.70.故17名运动员成绩的众数、中位数、平均数依次为1.75 m,1.70 m,1.69 m.探究1:平均数和中位数都描述了数据集中趋势,它们的大小关系和数据分布的形态有关.在图9.2-8的三种分布形态中,平均数和中位数的大小存在什么关系?一般来说,对于单峰值的频率分布直方图来说,如果直方图的形状是对称的(图1),那么平均数和中位数应该大体上差不多;如果直方图在右边“拖尾”(图2),那
7、么平均数大于中位数;如果直方图在左边“拖尾”(图3),那么平均数小于中位数.和中位数相比,平均数总是在“长尾巴”那边.例2 某学校要定制高一年级的校服,学生根据厂家提供的参考身高选择校服的规格.据统计,高一年级女生需要不同规格校服的频数如下表如果用一个量来代表该校高一年级女生所需校服的规格,那么在中位数、平均数和众数中,哪个量比较合适?试讨论用表中的数据估计全国高一女生校服规格的合理性.解:由表中的数据,我们可以发现,选择校服规格为“165”的女生的频数最多,所以众数165作为该校高一年级女生校服的规格比较合适。由于全国各地的高一年级的女生身高存在一定的差异,所以用一个学校的数据估计全国高一年
8、级女生校服的规格不合理.众数、中位数和平均数的比较名称优点缺点众数体现了样本数据的最大集中点众数只能传递数据中的信息的很少一部分,对极端值不敏感.中位数不受少数几个极端值数据(即排序靠前或者靠后的数据)的影响.对极端值不敏感.平均数与中位数相比,平均数反映出样本数据中的更多信息,对样本中的极端值更加敏感任何一个数据的改变都会引起平均数的改变,数据越“离群”,对平均数的影响越大.一般地,对数值型数据(如用水量、身高、收入、产量等)集中趋势的描述,可以用平均数、中位数;而对分类型数据(如校服规格、性别、产品质量等级等)集中趋势的描述,可以用众数.探究2:你能以100户居民月均用水量的频率分布直方图
9、提供的信息为例,给出估计的方法吗?1.2 4.2)样本平均数的估计假设组内的数据是均匀分布的0.077x3 0.077x3x1004.2 7.2)0.107x3 0.107x3x100.25.2 28.20.007x3 0.007x3x100小矩形的面积每一矩形底边中点横坐标样本平均数可以用每一个小矩形底边中点的横坐标与小矩形的面积的乘积之和近似值代替中位数的计算0.077x3=0.2310.107x3=0.3210231+0.321=0.552因此中位数落在4.2,7.2)内,设中位数为x,由根据频率分布直方图,月均用水量在区间4.2,7.2)内居民最多,可以将这个区间的中点5.7作为众数的
10、估计值.规律方法:众数、中位数、平均数与频率分布直方图的联系(1)众数:众数在样本数据的频率分布直方图中,就是最高矩形的底边中点的横坐标.(3)平均数:用频率分布直方图估计平均数时,平均数等于频率分布直方图中每个小矩形的面积乘以每个小矩形底边中点的横坐标之和.三、利用频率分布直方图估计总体的集中趋势例3某校从参加高一年级期末考试的学生中抽出60名,将其物理成绩(均为整数)分成六段40,50),50,60),90,100后画出如图所示的频率分布直方图.观察图中的信息,回答下列问题:(1)估计这次考试的物理成绩的众数m与中位数n(结果保留一位小数);解众数是频率分布直方图中最高小矩形底边中点的横坐标,所以众数为m75.0.前4个小矩形面积和为0.40.03100.70.5,前3个小矩形面积和为0.01100.015100.015100.40.5.而前4组的频率之和为0.040.080.150.210.480.5.设中位数为x吨.由0.50(x2)0.50.48,解得x2.04.故可估计居民月均用水量的中位数为2.04吨.课堂小结1.通过学习平均数、中位数和众数的计算及应用,重点培养数学运算素养及数据分析素养2.一组数据中的众数可能不止一个,中位数是唯一的,求中位数时,必须先排序.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 苗圃土地租赁合同(2024版)
- 购房合同贷款
- 考勤课件教学课件
- 2024年度教育培训合同标的为在线课程开发3篇
- 教师劳动合同
- 二零二四年份新能源汽车充电设施建设合同
- 《汽车维修接待实务》 课件 学习情境三 接待前准备
- 团队协作的课件
- 2024年度工程款清算补充协议2篇
- 租房合同标准版可打印
- DL5190.5-2019电力建设施工技术规范第5部分:管道及系统
- 《人工智能与机器学习》课程教学大纲
- 幼儿园教学环境安全隐患排查
- 《网络系统管理与维护》期末练习题
- 走进歌剧世界智慧树知到期末考试答案章节答案2024年北京航空航天大学
- DL-T 5148-2021水工建筑物水泥灌浆施工技术条件-PDF解密
- 《义务教育英语课程标准(2022年版)》测试题10套含答案
- 校园健康素养知识讲座
- 《古代文化常识》课件
- 整理收纳师课件
- 电子信息工程中的微波通信技术
评论
0/150
提交评论