




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、你知道正方体表面展开图有多少种吗?我们知道,同一个立方体图形,按不同的方式展开得到的平面展开图形一般是不一样的。常见的正方体平面展开图究竟有几种不同的形状呢?同学们一定熟悉这样一种操作:把一个正方形纸片平均分成9个小正方形,剪去角上四个小正方形,可以拼成一个无盖的正方体纸盒,其中五个面按习惯不妨记为下、左、右、前、后,如图一。好啦!现在只要把刚才剪去的一个小正方形作为“上”面,就可拼成一个正方体。作为正方体平面展开图,这个“上”应该和图1(1)中哪个面拼接在一起呢?观察图1(2),知“上”和前、后、左、右任一个面拼接都行(这四种拼接看作同一种情形),不妨和“后”拼接在一起,如图2。根据上和下、
2、左和右、前和后相间隔这一规律,现在我们把图2中的“左”或“右”平移,可得图3图7五种情形。平移图2中的“前”,可得图8;再平移图8中的“左”,可得图9、图10;把图10中的“上”向左平移,得图11;若移动图8(或图9、图10)中的“左”,又可得图12。同学们,当你和我一样,把图2图12这11个图剪下来,动手折一折,得到11个漂亮的小正方体时,你一定为我们的收获感到欢欣鼓舞吧!对正方体表面展开图的11种情况,为加深记忆,可编成如下口诀:一四一呈6种,一三二有3种,二二二与三三各1种,展开图共有11种。“动手实践,自主探索和合作交流”是新课程标准倡导学习数学的三种重要方法,而实践活动是培养我们进行
3、主动探索与合作交流的重要途径。只要通过自己主动观察、实验、猜想、验证等数学活动,就能使我们“建立空间观念,发展几何直觉”,提高思维能力。以上我们在6个面上,不重复、不遗漏地标出“上、下、左、右、前、后”的方法,可称为“标面法”。利用这样的方法,可直接辨别出6个大小一样的正方形拼接图能否折成正方体,还可熟练地解决这类改变题设的变式题。下面几题,你能轻松回答出来吗?例1 在图13中(每个小四边形皆为全等的正方形),可以是一个正方体表面展开图的是( ).例2图14是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得这个表面展开图沿虚线折成正方体后,相对面上的两个数互为相反数,则填在A、B、C内的三个数依次是( ).A.0,-2,1 B.0,1,-2 C.1,0,-2 D.-2,0,1例3图15所示的是一个正方体包装盒的表面展开图,各个面上标注的数字分别为1,2,3,4,5,6。现将表面展开图复原为正方体包装盒,则标注数字1和3的两个面是互相平行的,请你写出另一组相互平行的面上所对应的数字:_。注:例1、例2、例3的答案分别为:C;A;2与5或4与6。是不是有点多此一举?例4 一个无盖的正方体纸盒,将它展开成平面图形,可能情况总共有( )。A12种 B.11种 C.9种 D.8种千万注意,你可不要选B呦!选D才对。我又在炫耀了,不过你能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025福建省建筑安全员C证考试题库
- 南京师范大学《统计学专业前沿》2023-2024学年第二学期期末试卷
- 四川农业大学《医学论文写作与学术诚信》2023-2024学年第二学期期末试卷
- 广西体育高等专科学校《地球物理学》2023-2024学年第二学期期末试卷
- 甘肃畜牧工程职业技术学院《研究型综合》2023-2024学年第二学期期末试卷
- 哈尔滨工程大学《学前教育专业英语》2023-2024学年第二学期期末试卷
- 2024-2025学年山东省百师联考高三上学期11月考试历史试卷
- 上海民远职业技术学院《服装市场调研》2023-2024学年第二学期期末试卷
- 山西信息职业技术学院《秘书学》2023-2024学年第二学期期末试卷
- 贵州农业职业学院《口腔探究性学习(1)》2023-2024学年第二学期期末试卷
- 上海市建设工程施工图设计文件勘察设计质量疑难问题汇编(2024 版)
- 《康复工程学》课件-第一讲 康复工程概论
- 2025年度智慧医疗服务平台建设合同范本
- 2024项目管理人员安全培训考试题(审定)
- 2025四川宜宾市高县县属国企业第一次招聘3人易考易错模拟试题(共500题)试卷后附参考答案
- 2024 年国家公务员考试《申论》(地市级)真题及答案
- 2024年沈阳职业技术学院高职单招语文历年参考题库含答案解析
- 《榜样9》观后感心得体会一
- 2024年上海普陀区司法局招聘人民调解员考试真题
- 驾照考试题库及答案(完整版)
- 2024年3、6、9月青少年软件编程Python等级考试一级真题(全3套 含答案)
评论
0/150
提交评论