安徽省寿2022年中考猜题数学试卷含解析及点睛_第1页
安徽省寿2022年中考猜题数学试卷含解析及点睛_第2页
安徽省寿2022年中考猜题数学试卷含解析及点睛_第3页
安徽省寿2022年中考猜题数学试卷含解析及点睛_第4页
安徽省寿2022年中考猜题数学试卷含解析及点睛_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为()A10cmB30cmC45cmD300cm2三角形两边的

2、长是3和4,第三边的长是方程x212x350的根,则该三角形的周长为( )A14B12C12或14D以上都不对3如图,ABC内接于O,BC为直径,AB=8,AC=6,D是弧AB的中点,CD与AB的交点为E,则CE:DE等于( )A3:1B4:1C5:2D7:24下列实数中是无理数的是()AB22C5.Dsin455“射击运动员射击一次,命中靶心”这个事件是( )A确定事件 B必然事件 C不可能事件 D不确定事件6中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是( )ABCD7如图,已知反比函数的图象过RtABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若ABO的周长为

3、,AD=2,则ACO的面积为( )AB1C2D48计算:的结果是( )ABCD9如图,点D、E分别为ABC的边AB、AC上的中点,则ADE的面积与四边形BCED的面积的比为()A1:2B1:3C1:4D1:110如图,ABC中,B70,则BAC30,将ABC绕点C顺时针旋转得EDC当点B的对应点D恰好落在AC上时,CAE的度数是()A30B40C50D6011如图,在ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B,C)若线段AD长为正整数,则点D的个数共有( )A5个B4个C3个D2个12若代数式2x2+3x1的值为1,则代数式4x2+6x1的值为()A3B1C1D3二、

4、填空题:(本大题共6个小题,每小题4分,共24分)13用不等号“”或“”连接:sin50_cos5014如果抛物线y(k2)x2+k的开口向上,那么k的取值范围是_15农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10020050010002000A出芽种子数961654919841965发芽率0.960.830.980.980.98B出芽种子数961924869771946发芽率0.960.960.970.980.97下面有三个推断:当实验种子数量为100时,两种种子的发芽率均

5、为0.96,所以他们发芽的概率一样;随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;在同样的地质环境下播种,A种子的出芽率可能会高于B种子其中合理的是_(只填序号)16若代数式x26x+b可化为(x+a)25,则a+b的值为_17为参加2018年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.1,2.39,2.1,2.40,2.1这组数据的中位数和众数分别是_18方程的解是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或

6、演算步骤19(6分)如图,AB是O的直径,D、D为O上两点,CFAB于点F,CEAD交AD的延长线于点E,且CE=CF.(1)求证:CE是O的切线;(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.20(6分)如图,AB是O的直径,C、D为O上两点,且,过点O作OEAC于点EO的切线AF交OE的延长线于点F,弦AC、BD的延长线交于点G.(1)求证:FB;(2)若AB12,BG10,求AF的长.21(6分)某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成

7、如图所示的扇形统计图和条形统计图(均不完整)请根据统计图中的信息解答下列问题:本次抽查的样本容量是;在扇形统计图中,“主动质疑”对应的圆心角为度;将条形统计图补充完整;如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?22(8分)已知ACDC,ACDC,直线MN经过点A,作DBMN,垂足为B,连接CB(1)直接写出D与MAC之间的数量关系;(2)如图1,猜想AB,BD与BC之间的数量关系,并说明理由;如图2,直接写出AB,BD与BC之间的数量关系;(3)在MN绕点A旋转的过程中,当BCD30,BD时,直接写出BC的值23(8分)如图,在RtABC中,ACB=90,

8、以AC为直径的O与AB边交于点D,过点D作O的切线交BC于点E求证:BE=EC填空:若B=30,AC=2,则DE=_;当B=_度时,以O,D,E,C为顶点的四边形是正方形24(10分)矩形ABCD中,DE平分ADC交BC边于点E,P为DE上的一点(PEPD),PMPD,PM交AD边于点M(1)若点F是边CD上一点,满足PFPN,且点N位于AD边上,如图1所示求证:PN=PF;DF+DN=DP;(2)如图2所示,当点F在CD边的延长线上时,仍然满足PFPN,此时点N位于DA边的延长线上,如图2所示;试问DF,DN,DP有怎样的数量关系,并加以证明25(10分)如图,正六边形ABCDEF在正三角形

9、网格内,点O为正六边形的中心,仅用无刻度的直尺完成以下作图(1)在图1中,过点O作AC的平行线;(2)在图2中,过点E作AC的平行线26(12分)问题提出(1)如图1,正方形ABCD的对角线交于点O,CDE是边长为6的等边三角形,则O、E之间的距离为 ;问题探究(2)如图2,在边长为6的正方形ABCD中,以CD为直径作半圆O,点P为弧CD上一动点,求A、P之间的最大距离;问题解决(3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬暖夏凉的天然优点家住延安农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图3所示)

10、的门窗是由矩形ABCD及弓形AMD组成,AB=2m,BC=3.2m,弓高MN=1.2m(N为AD的中点,MNAD),小宝说,门角B到门窗弓形弧AD的最大距离是B、M之间的距离小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B到门窗弓形弧AD的最大距离27(12分)如图,在ABC中,ACB90,ABC10,CDE是等边三角形,点D在边AB上如图1,当点E在边BC上时,求证DEEB;如图2,当点E在ABC内部时,猜想ED和EB数量关系,并加以证明;如图1,当点E在ABC外部时,EHAB于点H,过点E作GEAB,交线段AC的延长线于点G,AG5CG,BH1求CG的长参考答案一、选择题(

11、本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】根据已知得出直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形,再根据扇形弧长等于圆锥底面圆的周长即可得出答案。【详解】直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形假设每个圆锥容器的地面半径为解得故答案选A.【点睛】本题考查扇形弧长的计算方法和扇形围成的圆锥底面圆的半径的计算方法。2、B【解析】解方程得:x=5或x=1当x=1时,3+4=1,不能组成三角形;当x=5时,3+45,三边能够组成三角形该三角形的周长为3+4+5=12,故选B3、A【解析】利用垂径定理的推论得出

12、DOAB,AF=BF,进而得出DF的长和DEFCEA,再利用相似三角形的性质求出即可【详解】连接DO,交AB于点F,D是的中点,DOAB,AF=BF,AB=8,AF=BF=4,FO是ABC的中位线,ACDO,BC为直径,AB=8,AC=6,BC=10,FO=AC=1,DO=5,DF=5-1=2,ACDO,DEFCEA,=1故选:A【点睛】此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出DEFCEA是解题关键4、D【解析】A、是有理数,故A选项错误;B、是有理数,故B选项错误;C、是有理数,故C选项错误;D、是无限不循环小数,是无理数,故D选项正确;故选:D5、D【解析】试题

13、分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D考点:随机事件6、C【解析】根据中心对称图形的概念进行分析【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C【点睛】考查了中心对称图形的概念中心对称图形是要寻找对称中心,旋转180度后两部分重合7、A【解析】在直角三角形AOB中,由斜边上的中线等于斜边的一半,求出OB的长,根据周长求出直角边之和,设其中一直角边AB=x,表示出OA,利用勾股定理求出AB与OA的长,过D作DE垂直于x轴,得到E为OA中点,求出O

14、E的长,在直角三角形DOE中,利用勾股定理求出DE的长,利用反比例函数k的几何意义求出k的值,确定出三角形AOC面积即可【详解】在RtAOB中,AD=2,AD为斜边OB的中线,OB=2AD=4,由周长为4+2,得到AB+AO=2,设AB=x,则AO=2-x,根据勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,整理得:x2-2x+4=0,解得x1=+,x2=-,AB=+,OA=-,过D作DEx轴,交x轴于点E,可得E为AO中点,OE=OA=(-)(假设OA=+,与OA=-,求出结果相同),在RtDEO中,利用勾股定理得:DE=(+)),k=-DEOE=-(+))(-))=1.SA

15、OC=DEOE=,故选A【点睛】本题属于反比例函数综合题,涉及的知识有:勾股定理,直角三角形斜边的中线性质,三角形面积求法,以及反比例函数k的几何意义,熟练掌握反比例的图象与性质是解本题关键8、B【解析】根据分式的运算法则即可求出答案【详解】解:原式=故选;B【点睛】本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型9、B【解析】根据中位线定理得到DEBC,DE=BC,从而判定ADEABC,然后利用相似三角形的性质求解.【详解】解:D、E分别为ABC的边AB、AC上的中点,DE是ABC的中位线,DEBC,DE=BC,ADEABC,ADE的面积:ABC的面积=1:4,AD

16、E的面积:四边形BCED的面积=1:3;故选B【点睛】本题考查三角形中位线定理及相似三角形的判定与性质10、C【解析】由三角形内角和定理可得ACB=80,由旋转的性质可得AC=CE,ACE=ACB=80,由等腰的性质可得CAE=AEC=50【详解】B70,BAC30ACB80将ABC绕点C顺时针旋转得EDCACCE,ACEACB80CAEAEC50故选C【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键11、C【解析】试题分析:过A作AEBC于E,AB=AC=5,BC=8,BE=EC=4,AE=3,D是线段BC上的动点(不含端点B,C),AEADAB,即3AD5,A

17、D为正整数,AD=3或AD=4,当AD=4时,E的左右两边各有一个点D满足条件,点D的个数共有3个故选C考点:等腰三角形的性质;勾股定理12、D【解析】由2x2+1x11知2x2+1x2,代入原式2(2x2+1x)1计算可得【详解】解:2x2+1x11,2x2+1x2,则4x2+6x12(2x2+1x)1221411故本题答案为:D.【点睛】本题主要考查代数式的求值,运用整体代入的思想是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】试题解析:cos50=sin40,sin50sin40,sin50cos50故答案为点睛:当角度在090间变化时,正弦值随着角度的增

18、大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大);正切值随着角度的增大(或减小)而增大(或减小)14、k2【解析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数k21【详解】因为抛物线y(k2)x2k的开口向上,所以k21,即k2,故答案为k2.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型15、【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发

19、芽的概率就是96%,所以中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以中的说法是合理的.故答案为:.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.16、1【解析】根据题意找到等量关系x26x+b=(x+a)25,根据系数相等求出a,b,即可解题.【详解】解:由题可知x26x+b=(

20、x+a)25,整理得:x26x+b= x2+2ax+a2-5,即-6=2a,b= a2-5,解得:a=-3,b=4,a+b=1.【点睛】本题考查了配方法的实际应用,属于简单题,找到等量关系求出a,b是解题关键.17、2.40,2.1【解析】把7天的成绩从小到大排列为:2.12,2.21,2.39,2.40,2.1,2.1,2.1它们的中位数为2.40,众数为2.1故答案为2.40,2.1点睛:本题考查了中位数和众数的求法,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组

21、数据的中位数.一组数据中出现次数最多的数是这组数据的众数.18、1【解析】,x=1,代入最简公分母,x=1是方程的解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析;(2)334a2【解析】(1)连接OC,AC,可先证明AC平分BAE,结合圆的性质可证明OCAE,可得OCB90,可证得结论;(2)可先证得四边形AOCD为平行四边形,再证明OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案【详解】(1)证明:连接OC,ACCFAB,CEAD,且CECFCAECABOCOA,CABOCACAEOCAOCAEOCEAEC180,

22、AEC90,OCE90即OCCE,OC是O的半径,点C为半径外端,CE是O的切线(2)解:ADCD,DACDCACAB,DCAB,CAEOCA,OCAD,四边形AOCD是平行四边形,OCADa,AB2a,CAECAB,CDCBa,CBOCOB,OCB是等边三角形,在RtCFB中,CFCB2-FB2=a23 ,S四边形ABCD12 (DCAB)CF334a2【点睛】本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径20、(1)见解析;(2).【解析】(1)根据圆周角定理得到GABB,根据切线的

23、性质得到GAB+GAF90,证明FGAB,等量代换即可证明;(2)连接OG,根据勾股定理求出OG,证明FAOBOG,根据相似三角形的性质列出比例式,计算即可.【详解】(1)证明:,.GABB,AF是O的切线,AFAO.GAB+GAF90.OEAC,F+GAF90.FGAB,FB;(2)解:连接OG.GABB,AGBG.OAOB6,OGAB.,FAOBOG90,FB,FAOBOG,.【点睛】本题考查的是切线的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.21、 (1)560;(2)54;(3)补图见解析;(4)18000人【解析】(1)本次调查的样本容量为22440

24、%=560(人);(2)“主动质疑”所在的扇形的圆心角的度数是:36084560=54; (3)“讲解题目”的人数是:56084168224=84(人)(4)60000=18000(人),答:在课堂中能“独立思考”的学生约有18000人.22、(1)相等或互补;(2)BD+ABBC;ABBDBC;(3)BC 或.【解析】(1)分为点C,D在直线MN同侧和点C,D在直线MN两侧,两种情况讨论即可解题,(2)作辅助线,证明BCDFCA,得BCFC,BCDFCA,FCB90,即BFC是等腰直角三角形,即可解题, 在射线AM上截取AFBD,连接CF,证明BCDFCA,得BFC是等腰直角三角形,即可解题

25、,(3)分为当点C,D在直线MN同侧,当点C,D在直线MN两侧,两种情况解题即可,见详解.【详解】解:(1)相等或互补;理由:当点C,D在直线MN同侧时,如图1,ACCD,BDMN,ACDBDC90,在四边形ABDC中,BAD+D360ACDBDC180,BAC+CAM180,CAMD;当点C,D在直线MN两侧时,如图2,ACDABD90,AECBED,CABD,CAB+CAM180,CAM+D180,即:D与MAC之间的数量是相等或互补;(2)猜想:BD+ABBC如图3,在射线AM上截取AFBD,连接CF又DFAC,CDACBCDFCA,BCFC,BCDFCAACCDACD90即ACB+BC

26、D90ACB+FCA90即FCB90BFAF+ABBFBD+AB;如图2,在射线AM上截取AFBD,连接CF,又DFAC,CDACBCDFCA,BCFC,BCDFCAACCDACD90即ACB+BCD90ACB+FCA90即FCB90BFABAFBFABBD;(3)当点C,D在直线MN同侧时,如图31,由(2)知,ACFDCB,CFBC,ACFACD90,ABC45,ABD90,CBD45,过点D作DGBC于G,在RtBDG中,CBD45,BD,DGBG1,在RtCGD中,BCD30,CGDG,BCCG+BG+1,当点C,D在直线MN两侧时,如图21,过点D作DGCB交CB的延长线于G,同的方

27、法得,BG1,CG,BCCGBG1即:BC 或,【点睛】本题考查了三角形中的边长关系,等腰直角三角形的性质,中等难度,分类讨论与作辅助线是解题关键.23、(1)见解析;(2)3;1.【解析】(1)证出EC为O的切线;由切线长定理得出EC=ED,再求得EB=ED,即可得出结论;(2)由含30角的直角三角形的性质得出AB,由勾股定理求出BC,再由直角三角形斜边上的中线性质即可得出DE;由等腰三角形的性质,得到ODA=A=1,于是DOC=90然后根据有一组邻边相等的矩形是正方形,即可得到结论【详解】(1)证明:连接DOACB=90,AC为直径,EC为O的切线;又ED也为O的切线,EC=ED,又EDO

28、=90,BDE+ADO=90,BDE+A=90又B+A=90,BDE=B,BE=ED,BE=EC;(2)解:ACB=90,B=30,AC=2,AB=2AC=4,BC=6,AC为直径,BDC=ADC=90,由(1)得:BE=EC,DE=BC=3,故答案为3;当B=1时,四边形ODEC是正方形,理由如下:ACB=90,A=1,OA=OD,ADO=1,AOD=90,DOC=90,ODE=90,四边形DECO是矩形,OD=OC,矩形DECO是正方形故答案为1【点睛】本题考查了圆的切线性质、解直角三角形的知识、切线长定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型24

29、、(1)证明见解析;证明见解析;(2),证明见解析【解析】(1)利用矩形的性质,结合已知条件可证PMNPDF,则可证得结论;由勾股定理可求得DM=DP,利用可求得MN=DF,则可证得结论;(2)过点P作PM1PD,PM1交AD边于点M1,则可证得PM1NPDF,则可证得M1N=DF,同(1)的方法可证得结论【详解】解:(1)四边形ABCD是矩形,ADC=90又DE平分ADC,ADE=EDC=45;PMPD,DMP=45,DP=MPPMPD,PFPN,MPN+NPD=NPD+DPF=90,MPN=DPF在PMN和PDF中, ,PMNPDF(ASA),PN=PF,MN=DF;PMPD,DP=MP,

30、DM2=DP2+MP2=2DP2,DM=DP又DM=DN+MN,且由可得MN=DF,DM=DN+DF,DF+DN=DP;(2)理由如下: 过点P作PM1PD,PM1交AD边于点M1,如图,四边形ABCD是矩形,ADC=90又DE平分ADC,ADE=EDC=45;PM1PD,DM1P=45,DP=M1P,PDF=PM1N=135,同(1)可知M1PN=DPF在PM1N和PDF中,PM1NPDF(ASA),M1N=DF,由勾股定理可得:=DP2+M1P2=2DP2,DM1DPDM1=DNM1N,M1N=DF,DM1=DNDF,DNDF=DP【点睛】本题为四边形的综合应用,涉及矩形的性质、等腰直角三

31、角形的性质、全等三角形的判定和性质、勾股定理等知识在每个问题中,构造全等三角形是解题的关键,注意勾股定理的应用本题考查了知识点较多,综合性较强,难度适中25、(1)作图见解析;(2)作图见解析.【解析】试题分析:利用正六边形的特性作图即可.试题解析:(1)如图所示(答案不唯一):(2)如图所示(答案不唯一):26、(1);(2);(2)小贝的说法正确,理由见解析,【解析】(1)连接AC,BD,由OE垂直平分DC可得DH长,易知OH、HE长,相加即可;(2)补全O,连接AO并延长交O右半侧于点P,则此时A、P之间的距离最大,在RtAOD中,由勾股定理可得AO长,易求AP长;(1)小贝的说法正确,补全弓形弧AD所在的O,连接ON,OA,OD,过点O作OEAB于点E,连接BO并延长交O上端于点P,则此时B、P之间的距离即为门角B到门窗弓形弧AD的最大距离,在RtANO中,设AO=r,由勾股定理可求出r,在RtOEB中,由勾股定理可得BO长,易知BP长.【详解】解:(1)如图1,连接AC,BD,对角线交点为O,连接OE交CD于H,则OD=OCDCE为等边三角形,ED=EC,OD=OCOE垂直平分DC,DHDC=1四边形ABCD为正方形,OHD为等腰直角三角形,OH=DH=1,在RtDH

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论