版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若两个非零向量、满足,且,则与夹角的余弦值为( )ABCD2如果直线与圆相交,则点与圆C的位置关系是( )A点M在圆C
2、上B点M在圆C外C点M在圆C内D上述三种情况都有可能3已知,函数,若函数恰有三个零点,则( )ABCD4已知命题p:“”是“”的充要条件;,则( )A为真命题B为真命题C为真命题D为假命题5已知椭圆内有一条以点为中点的弦,则直线的方程为( )ABCD6的展开式中,项的系数为( )A23B17C20D637已知向量,则向量在向量方向上的投影为( )ABCD8已知集合,则( )ABCD9命题“”的否定为( )ABCD10已知的共轭复数是,且(为虚数单位),则复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限11已知随机变量满足,.若,则( )A,B,C,D,12将函数的图像向
3、左平移个单位长度后,得到的图像关于坐标原点对称,则的最小值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若复数满足,其中是虚数单位,是的共轭复数,则_.14已知数列为等比数列,则_.15甲、乙、丙、丁四名同学报名参加淮南文明城市创建志愿服务活动,服务活动共有“走进社区”、“环境监测”、“爱心义演”、“交通宣传”等四个项目,每人限报其中一项,记事件为“4名同学所报项目各不相同”,事件为“只有甲同学一人报走进社区项目”,则的值为_.16已知平面向量、的夹角为,且,则的最大值是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)山东省2020年高考将实
4、施新的高考改革方案.考生的高考总成绩将由3门统一高考科目成绩和自主选择的3门普通高中学业水平等级考试科目成绩组成,总分为750分.其中,统一高考科目为语文、数学、外语,自主选择的3门普通高中学业水平等级考试科目是从物理、化学、生物、历史、政治、地理6科中选择3门作为选考科目,语、数、外三科各占150分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分.根据高考综合改革方案,将每门等级考试科目中考生的原始成绩从高到低分为A、B+、B、C+、C、D+、D、E共8个等级。参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%
5、、24%、24%、16%、7%、3%.等级考试科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八个分数区间,得到考生的等级成绩.举例说明.某同学化学学科原始分为65分,该学科C+等级的原始分分布区间为5869,则该同学化学学科的原始成绩属C+等级.而C+等级的转换分区间为6170,那么该同学化学学科的转换分为:设该同学化学科的转换等级分为x,69-6565-58=70-xx-61,求得x66.73.四舍五入后该同学化学学科赋分成绩为67.(1)某校高一年级共20
6、00人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布N(60,122).(i)若小明同学在这次考试中物理原始分为84分,等级为B+,其所在原始分分布区间为8293,求小明转换后的物理成绩;(ii)求物理原始分在区间(72,84)的人数;(2)按高考改革方案,若从全省考生中随机抽取4人,记X表示这4人中等级成绩在区间61,80的人数,求X的分布列和数学期望.(附:若随机变量N(,2),则P-+=0.682,P-2+2=0.954,P-3+3=0.997)18(12分)某房地产开发商在其开发的某小区前修建了一个弓形景观湖如图,该弓形所在的圆是以为直径的
7、圆,且米,景观湖边界与平行且它们间的距离为米开发商计划从点出发建一座景观桥(假定建成的景观桥的桥面与地面和水面均平行),桥面在湖面上的部分记作设(1)用表示线段并确定的范围;(2)为了使小区居民可以充分地欣赏湖景,所以要将的长度设计到最长,求的最大值19(12分)从抛物线C:()外一点作该抛物线的两条切线PA、PB(切点分别为A、B),分别与x轴相交于C、D,若AB与y轴相交于点Q,点在抛物线C上,且(F为抛物线的焦点).(1)求抛物线C的方程;(2)求证:四边形是平行四边形.四边形能否为矩形?若能,求出点Q的坐标;若不能,请说明理由.20(12分)贫困人口全面脱贫是全面建成小康社会的标志性指
8、标.党的十九届四中全会提出“坚决打赢脱贫攻坚战,建立解决相对贫困的长效机制”对当前和下一个阶段的扶贫工作进行了前瞻性的部署,即2020年要通过精准扶贫全面消除绝对贫困,实现全面建成小康社会的奋斗目标.为了响应党的号召,某市对口某贫困乡镇开展扶贫工作.对某种农产品加工生产销售进行指导,经调查知,在一个销售季度内,每售出一吨该产品获利5万元,未售出的商品,每吨亏损2万元.经统计,两市场以往100个销售周期该产品的市场需求量的频数分布如下表:市场:需求量(吨)90100110频数205030市场:需求量(吨)90100110频数106030把市场需求量的频率视为需求量的概率,设该厂在下个销售周期内生
9、产吨该产品,在、两市场同时销售,以(单位:吨)表示下一个销售周期两市场的需求量,(单位:万元)表示下一个销售周期两市场的销售总利润.(1)求的概率;(2)以销售利润的期望为决策依据,确定下个销售周期内生产量吨还是吨?并说明理由.21(12分)在中,内角所对的边分别为,已知,且.()求角的大小;()若,求面积的取值范围.22(10分)在数列中,(1)求数列的通项公式;(2)若存在,使得成立,求实数的最小值2022学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】设平面向量与的夹角为,由已知条
10、件得出,在等式两边平方,利用平面向量数量积的运算律可求得的值,即为所求.【题目详解】设平面向量与的夹角为,可得,在等式两边平方得,化简得.故选:A.【答案点睛】本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考查计算能力,属于中等题.2、B【答案解析】根据圆心到直线的距离小于半径可得满足的条件,利用与圆心的距离判断即可.【题目详解】直线与圆相交,圆心到直线的距离,即也就是点到圆的圆心的距离大于半径即点与圆的位置关系是点在圆外故选:【答案点睛】本题主要考查直线与圆相交的性质,考查点到直线距离公式的应用,属于中档题3、C【答案解析】当时,最多一个零点;当时,利用导数研究
11、函数的单调性,根据单调性画函数草图,根据草图可得【题目详解】当时,得;最多一个零点;当时,当,即时,在,上递增,最多一个零点不合题意;当,即时,令得,函数递增,令得,函数递减;函数最多有2个零点;根据题意函数恰有3个零点函数在上有一个零点,在,上有2个零点,如图:且,解得,故选【答案点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.4、B【答案解析】由的单调性,可判断p是真命题;分类讨论打开绝对值,可得q是假命题,依次分析即得解【题目详解】由函数是R上的增函数,知命题p是真命题对于命题q,当,即时,;当,即时,
12、由,得,无解,因此命题q是假命题所以为假命题,A错误;为真命题,B正确;为假命题,C错误;为真命题,D错误故选:B【答案点睛】本题考查了命题的逻辑连接词,考查了学生逻辑推理,分类讨论,数学运算的能力,属于中档题.5、C【答案解析】设,则,相减得到,解得答案.【题目详解】设,设直线斜率为,则,相减得到:,的中点为,即,故,直线的方程为:.故选:.【答案点睛】本题考查了椭圆内点差法求直线方程,意在考查学生的计算能力和应用能力.6、B【答案解析】根据二项式展开式的通项公式,结合乘法分配律,求得的系数.【题目详解】的展开式的通项公式为.则出,则出,该项为:;出,则出,该项为:;出,则出,该项为:;综上
13、所述:合并后的项的系数为17.故选:B【答案点睛】本小题考查二项式定理及展开式系数的求解方法等基础知识,考查理解能力,计算能力,分类讨论和应用意识.7、A【答案解析】投影即为,利用数量积运算即可得到结论.【题目详解】设向量与向量的夹角为,由题意,得,所以,向量在向量方向上的投影为.故选:A.【答案点睛】本题主要考察了向量的数量积运算,难度不大,属于基础题.8、C【答案解析】解不等式得出集合A,根据交集的定义写出AB【题目详解】集合Ax|x22x30 x|1x3,故选C【答案点睛】本题考查了解不等式与交集的运算问题,是基础题9、C【答案解析】套用命题的否定形式即可.【题目详解】命题“”的否定为“
14、”,所以命题“”的否定为“”.故选:C【答案点睛】本题考查全称命题的否定,属于基础题.10、D【答案解析】设,整理得到方程组,解方程组即可解决问题【题目详解】设,因为,所以,所以,解得:,所以复数在复平面内对应的点为,此点位于第四象限.故选D【答案点睛】本题主要考查了复数相等、复数表示的点知识,考查了方程思想,属于基础题11、B【答案解析】根据二项分布的性质可得:,再根据和二次函数的性质求解.【题目详解】因为随机变量满足,.所以服从二项分布,由二项分布的性质可得:,因为,所以,由二次函数的性质可得:,在上单调递减,所以.故选:B【答案点睛】本题主要考查二项分布的性质及二次函数的性质的应用,还考
15、查了理解辨析的能力,属于中档题.12、B【答案解析】由余弦的二倍角公式化简函数为,要想在括号内构造变为正弦函数,至少需要向左平移个单位长度,即为答案.【题目详解】由题可知,对其向左平移个单位长度后,其图像关于坐标原点对称故的最小值为故选:B【答案点睛】本题考查三角函数图象性质与平移变换,还考查了余弦的二倍角公式逆运用,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】设,代入已知条件进行化简,根据复数相等的条件,求得的值.【题目详解】设,由,得,所以,所以.故答案为:【答案点睛】本小题主要考查共轭复数,考查复数相等的条件,属于基础题.14、81【答案解析】设数列的公
16、比为,利用等比数列通项公式求出,代入等比数列通项公式即可求解.【题目详解】设数列的公比为,由题意知, 因为,由等比数列通项公式可得,解得,由等比数列通项公式可得,.故答案为:【答案点睛】本题考查等比数列通项公式;考查运算求解能力;属于基础题.15、【答案解析】根据条件概率的求法,分别求得,再代入条件概率公式求解.【题目详解】根据题意得所以故答案为:【答案点睛】本题主要考查条件概率的求法,还考查了理解辨析的能力,属于基础题.16、【答案解析】建立平面直角坐标系,设,可得,进而可得出,由此将转化为以为自变量的三角函数,利用三角恒等变换思想以及正弦函数的有界性可得出结果.【题目详解】根据题意建立平面
17、直角坐标系如图所示,设,以、为邻边作平行四边形,则,设,则,且,在中,由正弦定理,得,即,在中,由正弦定理,得,即.,则,当时,取最大值.故答案为:.【答案点睛】本题考查了向量的数量积最值的计算,将问题转化为角的三角函数的最值问题是解答的关键,考查计算能力,属于难题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1)(i)83.;(ii)272.(2)见解析.【答案解析】(1)根据原始分数分布区间及转换分区间,结合所给示例,即可求得小明转换后的物理成绩;根据正态分布满足N60,122,结合正态分布的对称性即可求得72,84内的概率,根据总人数即可求得在该区间的人数。(2
18、)根据各等级人数所占比例可知在区间61,80内的概率为25,由二项分布即可求得X的分布列及各情况下的概率,结合数学期望的公式即可求解。【题目详解】(1)(i)设小明转换后的物理等级分为x,93-8484-82=90-xx-81,求得x82.64.小明转换后的物理成绩为83分;(ii)因为物理考试原始分基本服从正态分布N60,122,所以P(7284)=P(6084)-P(6072)=12P(3684)-12P(4872)=120.954-0.682=0.136.所以物理原始分在区间72,84的人数为20000.136=272(人);(2)由题意得,随机抽取1人,其等级成绩在区间61,80内的概
19、率为25,随机抽取4人,则XB4,25.PX=0=354=81625,PX=1=C4125353=216625,PX=2=C42252352=216625,PX=3=C43253351=96625,PX=4=254=16625.X的分布列为X01234P816252166252166259662516625数学期望EX=425=85.【答案点睛】本题考查了统计的综合应用,正态分布下求某区间概率的方法,分布列及数学期望的求法,文字多,数据多,需要细心的分析和理解,属于中档题。18、(1),;(2)米.【答案解析】(1) 过点作于点再在中利用正弦定理求解,再根据求解,进而求得.再根据确定的范围即可
20、.(2)根据(1)有,再设,求导分析函数的单调性与最值即可.【题目详解】解:过点作于点 则,在中,由正弦定理得:, ,因为,化简得,令,且,因为,故令即,记,当时,单调递增;当时,单调递减,又, 当时,取最大值,此时,的最大值为米【答案点睛】本题主要考查了三角函数在实际中的应用,需要根据题意建立角度与长度间的关系,进而求导分析函数的单调性,根据三角函数值求解对应的最值即可.属于难题.19、(1);(2)证明见解析;能,.【答案解析】(1)根据抛物线的定义,求出,即可求抛物线C的方程;(2)设,写出切线的方程,解方程组求出点的坐标. 设点,直线AB的方程,代入抛物线方程,利用韦达定理得到点的坐标,写出点的坐标,可得线段相互平分,即证四边形是平行四边形;若四边形为矩形,则,求出,即得点Q的坐标.【题目详解】(1)因为,所以,即抛物线C的方程是. (2)证明:由得,.设, 则直线PA的方程为(),则直线PB的方程为(),由()和()解得:,所以.设点,则直线AB的方程为.由得,则,所以,所以线段PQ被x轴平分,即被线段CD平分.在中,令解得,所以,同理得,所以线段CD的中点坐标为,即,又因为直线PQ的方程为,所以线段CD的中点在直线PQ上,即线段CD被线段PQ平分.因此,四边形是平行四边形.由知,四边形是平行四边形.若四边形是矩形,则,即,解得,故当点Q
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 快递保管合同范例
- 切割支撑合同范例
- 电表供电合同范例
- 家居安装合同范例
- 学校教室施工合同范例
- 《认识中括号》(教学实录)-2024-2025学年五年级上册数学冀教版
- 厂区垃圾运输合同范例
- 布料面料采购合同范例
- 唐山学院《社区发展与住房规划》2023-2024学年第一学期期末试卷
- 港口煤炭服务合同范例
- 辽宁省抚顺市清原县2024届九年级上学期期末质量检测数学试卷(含解析)
- 安徽省蚌埠市联考2024-2025学年七年级上学期12月期末考试英语试题(无答案)
- 2024-2025年第一学期小学德育工作总结:点亮德育灯塔引领小学生全面成长的逐梦之旅
- 《SYT6848-2023地下储气库设计规范》
- 2024至2030年中国甲醚化氨基树脂行业投资前景及策略咨询研究报告
- 行政案例分析-第二次形成性考核-国开(SC)-参考资料
- 2024-2025学年人教版八年级上学期数学期末复习试题(含答案)
- “感恩老师”教师节主题班会教案【三篇】
- 《园林政策与法规》课件
- 扬尘防治(治理)监理实施细则(范本)
- 读书分享《终身成长》课件
评论
0/150
提交评论